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Abstract 

The work described in this thesis details the efforts towards the synthesis of steroid 

bisconjugate materials. Specifically, a library of ten steroid sulfate glucuronide and ten 

bisglucuronide reference materials were prepared. In addition, a study of their mass 

spectrometry (MS) behaviour was conducted, with the goal of using these reference 

materials to identify new urinary markers that can then be used in anti-doping or diagnostic 

applications. Two extra steroid bis(sulfates) were also synthesised as reference materials 

for prenatal diagnosis. 

Chapter 1 introduces steroids in general, their metabolism in mammalian systems, the 

strengths and limitations of the current steroid detection methods, and how they can be 

improved. 

Chapter 2 discusses the synthetic steps that were taken to produce the steroid sulfate 

glucuronides and bisglucuronides, including stable isotope labelled derivatives. This 

includes a discussion of the sulfation, reduction, and glucuronylation reactions. This chapter 

also explains the MS study of the reference materials that were synthesised, especially 

using tandem mass spectrometry (MS/MS). It also details an LC-MS method developed to 

identify new steroid markers in human urine and efforts to confirm their identities against the 

prepared materials. 

Chapter 3 discusses the synthetic steps that were taken to produce the steroid bis(sulfates) 

to be used as reference materials in prenatal diagnosis. Experimental procedures for the 

synthesis of these compounds are also presented. 

Chapter 4 concludes the work presented in this thesis followed by suggestions for future 

work in this field. 
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Steroid nomenclature 

In Figure i, the numbering of steroid core is shown as well as the numbering of the extra 

carbons from the conjugate groups 1. When both conjugate groups at the two ends of the 

steroid structure contain carbons, numbering continues from the conjugate at the lowest 

numbered steroid carbon. Figure i shows four possible doubly conjugated steroid 

metabolites with their names shown. The naming system used in this thesis is not fully 

systematic and always the steroid name (following the IUPAC rules) followed by the 

conjugate position (if required) and name. It is important to note that compounds that have 

two glucuronide units are called bisglucuronides where the two glucuronic acid units are 

attached at two different sites. This is not to be confused with diglucuronide conjugates that 

have two glucuronic acid units connected at a single site 2,3. 

 

Figure i. Examples of bisconjugate steroids with numbering of steroid core and conjugates 

According to their structures, the steroids presented in this thesis can be classed as one of 

four types: androstane, estrane, pregnane, and cholane (Figure ii). 

 

Figure ii. Different structure of steroids  



viii 
 

Contents 

 
Author’s declaration ............................................................................................................. ii 

Acknowledgements ............................................................................................................. iii 

Abstract ............................................................................................................................... iv 

Abbreviations ....................................................................................................................... v 

Steroid nomenclature ......................................................................................................... vii 

Contents ........................................................................................................................... viii 

Chapter 1 – Introduction ...................................................................................................... 1 

1.1. Steroids ..................................................................................................................... 1 

1.2. Steroid metabolism .................................................................................................... 1 

1.3. Steroid detection (LC-MS vs GC-MS) ....................................................................... 2 

1.4. Importance of bisconjugate steroid metabolites ........................................................ 3 

1.5. Previous syntheses of steroid bisglucuronides and sulfate glucuronides .................. 5 

Chapter 2 – Steroid Bisglucuronides and Sulfate Glucuronides .......................................... 8 

2.1. Foreword ................................................................................................................... 8 

2.2. Synthesis of Steroid Bisglucuronide and Sulfate Glucuronide Reference Materials: 
Unearthing Neglected Treasures of Steroid Metabolism ................................................ 14 

Chapter 3 – Steroid Bis(sulfates) ..................................................................................... 105 

3.1. Foreword ............................................................................................................... 105 

3.2. Steroid sulfation pathways targeted by disulfates determination. Application to 
prenatal diagnosis. ....................................................................................................... 107 

3.3. Experimental section ............................................................................................. 143 

3.3.1. Materials ......................................................................................................... 143 

3.3.2. Instruments ..................................................................................................... 143 

3.3.3. 5α-Pregnane-3β,20S-diol bis(sulfate), ammonium salt ................................... 144 

3.3.4. 21-Hydroxypregnenolone ............................................................................... 144 

3.3.5. 21-Hydroxypregnenolone bis(sulfate), ammonium salt ................................... 145 

Chapter 4 – Conclusions and Future Work ...................................................................... 146 

References ...................................................................................................................... 147 

 
 

 

 



1 
 

Chapter 1 – Introduction 

1.1. Steroids 

Steroids are a large family of compounds, either synthetic or naturally occurring, that contain 

four fused carbocyclic rings as the core structure, which three six-membered rings (rings A, 

B, and C), and one five-membered ring (ring D). By their functionality, steroids can be 

grouped as corticosteroids or sex hormones. Corticosteroids can be divided further into two 

groups such as the glucocorticoids and mineralocorticoids, which can help regulate blood 

pressure. On the other hand, the sex hormones can be divided into three groups, 

progestogens, androgens, and estrogens. Sex hormones are important for both growth 

(anabolic) and sexual development (androgenic). Thus, often the use of sex hormones that 

have androgenic anabolic effect (androgenic anabolic steroids (AAS)) is abused in the world 

of sport. The AAS can range from estranes (nandrolone), androstanes (testosterone), or 

pregnanes (tetrahydrogestrinone). The use of synthetic AAS was banned by the 

International Olympic Committee in 1974 due to their performance enhancing effects. 

According to the World Anti-Doping Agency (WADA) annual statistics, around 300,000 

samples were analysed in 2016, with around 4,800 leading to the detection of prohibited 

substances, metabolites or markers. Of these, 43% of them arose from AAS abuse 4.  

1.2. Steroid metabolism 

While steroids are naturally hydrophobic, they rapidly undergo metabolism to increase their 

water solubility for excretion in biological fluids 5. In mammalian systems, steroids undergo 

two phases of metabolism 6. Phase I metabolism mainly consists of oxidation, reduction, 

and hydroxylation reactions that introduce polar functionality to the steroid framework. This 

phase is responsible for the drug activation or inactivation and frequently, the introduction 

of the necessary functional groups for phase II metabolism. Phase II metabolism conjugates 

the steroid with the highly polar or charged groups to facilitate excretion. The two most 

important polar groups for phase II metabolism are sulfate and glucuronic acid. This 

conjugation process is catalysed by enzymes, including the sulfotransferases (SULTs) for 

sulfate conjugation 6,7, and the uridine 5’-diphosphoglucuronosyltransferases (UGTs) for the 

glucuronide conjugation 6,8. Phase II metabolism is the main step that increases steroid 

hydrophilicity, so that they can be rapidly and efficiently excreted from the body in biological 

fluids such as urine and bile. In the drug testing laboratory, steroid metabolites are typically 

assayed from urine or sometimes in blood samples. 
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Figure 1. Steroid metabolism 

1.3. Steroid detection (LC-MS vs GC-MS) 

Since the steroids appear in a metabolised form in the urine sample, detecting steroids is 

not as straightforward as looking for the parent steroid. Instead, analytical data consistent 

with the downstream steroid metabolites must be obtained as a marker of steroid 

administration. The current approach for steroid metabolite detection in most analytical 

laboratories uses gas chromatography-mass spectrometry (GC-MS). However, steroid 

sulfates and steroid glucuronides are not volatile or thermally stable enough for GC-MS 

analysis. Thus, the laboratory must hydrolyse the phase II metabolites back to the phase I 

metabolites, and then chemically derivatise them, typically as the trimethylsilyl (TMS) 

derivative, for optimal GC performance 6,9. This process takes time and the hydrolysis is not 

universally applicable to all steroids. The main enzyme that is used for the hydrolysis of 

steroid glucuronides is the Escherichia coli (E. coli) β-glucuronidase, but no enzyme is 

routinely used for the hydrolysis of steroid sulfates. The use of the β-glucuronidase enzyme 

is also mandated by WADA for the steroid module of the athlete biological passport (ABP). 

This means, urinary steroid sulfate metabolites are not routinely targeted for analysis. In 

order to improve the current detection methods, research is underway to try and find an 

enzyme that can effectively hydrolyse any steroid sulfate back to the parent steroid 10. 

Another problem with the current approach is that not all steroid glucuronides can be 

hydrolysed by the β-glucuronidase enzyme. For example, 6β-hydroxyandrosterone 3-

glucuronide and 6β-hydroxyetiocholanolone 3-glucuronide are resistant to hydrolysis and 

remain conjugated even after the treatment with the β-glucuronidase enzyme 11. Chemical 

hydrolysis such as acid solvolysis can also be used. The drawbacks of this technique is that 

it cannot differentiate between sulfate and glucuronide conjugates, and it is known to 
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degrade sensitive analytes 9. Overall, removing the conjugates also destroys any 

information that might be derived from the study of conjugation sites or levels.  

Another approach is to detect the intact phase II conjugates in the urine sample using the 

liquid chromatography-mass spectrometry (LC-MS) methods, since phase II conjugates 

ionise well by electrospray ionisation (ESI), and no hydrolysis or derivatisation is required. 

This LC-MS technique can detect both sulfates and glucuronides more rapidly. However, 

sulfate and glucuronide reference materials are not commonly available. As a result, 

hydrolysis is often required prior to confirmation. 

Figure 2. Methods of steroid detection in the analytical laboratory 

1.4. Importance of bisconjugate steroid metabolites 

Almost uniformly, analytical laboratories have targeted monoconjugate steroid sulfates and 

glucuronides as markers of steroid abuse however steroid bisconjugates could also 

potentially serve as markers of steroid administration. Previously, steroid bis(sulfates), 

bisglucuronides, and sulfate glucuronides were detected naturally in human plasma 12,13 and 

urine 14,15. The similarities between these studies were that the steroid metabolites were 

extracted from either plasma or urine, which was then separated into fractions, solvolysed 

or hydrolysed using β-glucuronidase enzyme, derivatised, and finally detected using GC-

MS. Fractionation took a great deal of effort, however it could be done either using 

electrophoresis (sometimes followed by paper chromatography) or ion exchange 

chromatography. In the studies of Miyabo & Kornel (1974) 13 and Kornel & Saito (1975) 14, 

radioactive steroid was administered to healthy volunteers, thus a radioactivity test was also 

used to detect the metabolites. At the end, the ability to detect these metabolites allowed 

them to study different levels of metabolites such as in patients with myocardial infarction 

and abnormal plasma lipid concentrations 12, patients with essential hypertension 13, or 

Cushing’s syndrome 15. 
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These markers can also be found using an open screening method. This method starts by 

synthesising a representative library of putative target molecules including steroid 

bis(sulfates), bisglucuronides, or sulfate glucuronides, and studying their LC-MS ionisation 

and fragmentation to uncover patterns or trends common to all library members, and also 

those specific to different structure types. Once selected, common modes of fragmentation 

can be used to perform an open screen across a broad mass range including theoretical 

transitions for bisconjugates not contained in the original library. Once open screening is 

completed, the identity of newly identified bisconjugates must be assessed by evaluation of 

more complete MS fragmentation and where possible by comparison to the synthetically-

derived reference materials. For compound confirmation, both chromatographic and mass 

spectrometric criteria are compared with the reference material, and they should match 

within tolerated range according to rules, such as those developed by WADA 16. 

Promising results have come from the direct detection using LC-MS of bisconjugate steroid 

metabolites, especially steroid bis(sulfates). McLeod et al. (2017) synthesised 23 steroid 

bis(sulfates) and studied their characteristic MS fragmentation 17. Using LC-MS/MS 

analysis, it was found that the di-anionic steroid bis(sulfates) fragment into a singly charged 

steroid mono-sulfate by loss of [HSO4]-, resulting in a mass decrease of 97 Da but an overall 

increase in mass-to-charge ratio (m/z) due to the loss of a negative charge. This 

fragmentation behaviour is specific to di-anionic steroid bis(sulfates) and can rapidly detect 

steroid bis(sulfates) in urine samples after simple extraction, without the hydrolysis and 

derivatisation steps. The method was used to study the endogenous steroid profile and was 

also applied to detect tibolone metabolites in drug administration trial samples. Recently, 

this technique was used to detect steroid bis(sulfates) that were important for the prenatal 

diagnosis of steroid metabolism pathologies such as: Steroid Sulfatase Deficiency (STSD), 

Smith-Lemli-Opitz Syndrome (SLOS) or cytochrome P450 Oxido-Reductase Deficiency 

(PORD) 18. 

 

Scheme 1. Typical fragmentation of steroid bis(sulfates) 
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1.5. Previous syntheses of steroid bisglucuronides and sulfate glucuronides 

Analytical studies of bisconjugated phase II steroid metabolites have been done in the past, 

but the access to reference materials for confirmation was very limited. In the 1960s, the 

focus of the steroid bisglucuronides and sulfate glucuronides was mainly directed to the 

estranes. Levitz et al. (1965) synthesised estriol 3-sulfate 16-glucuronide qualitatively from 

estriol using adenosine triphosphate (ATP) and guinea pig liver extract for sulfation, and 

uridine diphosphate glucuronic acid (UDPGA) and human liver extract for glucuronylation 19. 

They found that conjugating estriol with the glucuronide first followed by sulfate worked, but 

the sequence did not work in the reverse order. Soon after, Cantrall et al. (1966) made the 

first sulfate glucuronide quantitatively and chemically using a Koenigs-Knorr reaction for the 

glucuronylation 20. They also started by attaching the glucuronide first followed by the 

sulfate, as the sulfate group is quite labile in acidic conditions. After a process involving 

protection and deprotection, they could prepare estradiol 3-sulfate 17-glucuronide in 5 steps. 

This same strategy, adding the protected glucuronide group followed by sulfate group, was 

then used by Joseph et al. (1969) to synthesise estriol 3-sulfate 16-glucuronide in 

approximately 15% overall yield 21.  

 

Scheme 2. Synthesis of estradiol 3-sulfate 17-glucuronide by Cantrall et al. (1966) 20 
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For steroid bisglucuronides, estriol 3,16-bisglucuronide was first synthesised qualitatively by 

Kirdani et al. (1968) 22. They synthesised the compound stepwise starting from the 3-

glucuronide, followed by addition of the 16-glucuronide using either guinea pig liver or 

mouse liver extracts and UDPGA. They found that the reverse order of glucuronylation, 

adding 3-glucuronide after the 16-glucuronide, did not work. Mattox et al. (1983) then made 

bisglucuronide metabolites of deoxycorticosterone and corticosterone quantitatively and 

chemically using the Koenigs-Knorr reaction 23. They were able to synthesise their target 

compounds from the dihydroxy steroids. Ma et al. (2014) prepared estradiol bisglucuronide 

qualitatively using the glucuronylsynthase enzyme and fluoride sugar in one step, but 

separation of the mixture of mono and bisglucuronide product was not performed 24. Most 

recent examples came from Esquivel et al. (2017) 25. They synthesized a library of 19 

bisglucuronides qualitatively using the Koenigs-Knorr reaction. This was the first library 

made, but the products were only characterised by LC-MS. The mixture of steroidal products 

from the reaction was extracted and analysed by LC-MS. 

 

Figure 3. Previous syntheses of steroid bisglucuronides and sulfate glucuronides 
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There are a limited number of reference materials previously reported, and most of them 

have not been studied by modern LC-MS methods. Thus, the goal of this work was to 

prepare a library of steroid bisglucuronide and sulfate glucuronide reference materials. This 

paves the way for the development of new MS methods targeting bisconjugates to detect 

AAS doping in sports or the study of steroid metabolism associated with human disease. 

                             

Figure 4. 5α-androstane-3β,17β-diol bisglucuronide, ammonium salt (left), 5α-androstane-

3β,17β-diol 3-sulfate 17-glucuronide, ammonium salt (right) 

 

  



8 
 

Chapter 2 – Steroid Bisglucuronides and Sulfate Glucuronides 

2.1. Foreword 

At the time of writing this thesis, the following manuscript had been prepared for submission 

to “Journal of Steroid Biochemistry and Molecular Biology”. This publication describes the 

synthesis of bisconjugate steroids, especially steroid bisglucuronides and sulfate 

glucuronides. This publication was authored by Mr. Andy Pranata, Mr. Christopher C. 

Fitzgerald, Ms. Erin Westley, Ms. Natasha J. Anderson, Dr. Paul Ma, Dr. Oscar J. Pozo, and 

Associate Professor Malcolm D. McLeod. A full draft of the manuscript was prepared by Mr. 

Andy Pranata with the assistance of other co-authors and was coordinated by Associate 

Professor Malcolm D. McLeod.  

In the past there were two main pathways to synthesise steroid glucuronides. Chemically, 

steroid glucuronide can be synthesised using the Koenigs-Knorr reaction 26 or its more 

modern variants including non-halide glycosyl donors. One of the first examples of steroid 

glucuronide synthesis using this reaction was dehydroepiandrosterone (DHEA) 3-

glucuronide by Schapiro in 1939 27. This synthesis used methyl 2,3,4-tri-O-acetyl-α-D-

glucuronyl bromide and silver carbonate to afford the protected glucuronide, which was then 

deprotected. Even though this reaction was successful, it suffers from low yield, unwanted 

side products, and the need of one or more deprotection steps to afford the free glucuronide. 

Another way to synthesise steroid glucuronides is to use the uridine 5’-

diphosphoglucuronosyltransferases (UGTs) enzyme that is responsible for glucuronide 

conjugation in mammalian systems 6,8. This enzymatic reaction removed the need of 

deprotection since the enzyme can transfer the free glucuronic acid. This one step reaction 

is also stereospecific, however it can be substrate-specific. Furthermore, the UGTs enzyme 

is often obtained from animals such as rats and dogs, this limits the reaction to only small 

scale.  

In this thesis, glucuronylation reaction was performed using the Eschericia coli (E. coli) 

glucuronylsynthase enzyme. This enzyme is a mutant (E504G) of the E. coli β-glucuronidase 

developed within the group by Wilkinson et al. (2008) 28. The E. coli β-glucuronidase is 

primarily used in the analytical laboratories to deconjugate glucuronide metabolites. The 

active site of E. coli β-glucuronidase contains two key glutamate residues at position 413 

and 504. Glutamic acid 413 (E413) functions as a general acid/base, while glutamic acid 

504 (E504) functions as a nucleophile. Together, these two residues are responsible for the 

double displacement hydrolysis (see Scheme 3). In 1998, Mackenzie et al. 29 managed to 
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remove the hydrolytic activity of the β-glucosidase enzyme found in Agrobacterium sp. to 

generate a glycosynthase mutant by a single-point mutation. Inspired by this finding, 

Wilkinson et al. (2008) performed a single-point mutation on E. coli β-glucuronidase at 

position 504 from glutamic acid to glycine (E504G). This became the glucuronylsynthase 

enzyme that can conjugate α-D-glucuronyl fluoride sugar donor to an alcohol acceptor such 

as a steroid alcohol (see Scheme 3). 

 

Scheme 3. Comparison of E. coli β-glucuronidase (top) and glucuronylsynthase (E504G) 

(bottom) mechanisms 

After the finding of the glucuronylsynthase enzyme, the glucuronylation reaction is regularly 

performed within the group using the E. coli glucuronylsynthase (E504G) enzyme as catalyst 

and excess α-D-glucuronyl fluoride sugar donor 24,28,30. Furthermore, the reaction mixture 

could be rapidly purified using a Waters OASIS weak anion exchange (WAX) solid phase 

extraction (SPE) cartridge to remove unreacted steroid, excess fluoro sugar, protein, and 

salts. Results from Ma et al. 24 obtained as part of his PhD candidature showed 14 examples 

of steroid monoglucuronides that were synthesised and gave between 5‐90% conversions. 

In the same publication, the glucuronylation reaction on estradiol was performed giving a 

mixture of the 3- and 17-glucuronides and the bisglucuronide in a 1.0:1.6:1.1 ratio, 

respectively, as determined by NMR. However, no further purification was attempted.  
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This project was then continued by Ms. Natasha J. Anderson as part of a BSc (Honours) 

project who managed to glucuronylate steroid diols and a triol (i.e. steroids that have more 

than one hydroxyl group) to produce four mixtures containing steroid bisglucuronides 31. Due 

to time limitations, only two of the mixtures were successfully purified using C18 SPE 

cartridges (Compound 1 and Compound 2 in Table 1 below). Table 1 below shows that full 

conversion to steroid bisglucuronides did not occur, instead the reactions gave steroid 

monoglucuronide impurities that were difficult to separate. For the glucuronylation of 

estradiol given below (Compound 3), doubling the amount of α-D-glucuronyl fluoride donor 

from the usual five equivalents gave a modest increase in estradiol bisglucuronide formation. 

However, doubling both sugar donor and the E. coli glucuronylsynthase enzyme gave a 

more significant increase in the proportion of estradiol bisglucuronide produced, but still 

mixtures containing estradiol 3- and 17-glucuronides. 
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Table 1. Results from previous attempt on making steroid bisglucuronides 31 

Bisglucuronide product a Ratio 

 

2 : 1 b 

(bisglucuronide : 3-glucuronide) 

 

1 : 1 b 

(bisglucuronide : 3-glucuronide) 

 

2 : 1 : 3 b 

3 : 1 : 3 b, c 

13 : 1 : 5 b, c, d 

(bisglucuronide : 3-glucuronide : 17-glucuronide) 

 

Complex mixture of mono- and bis-glucuronides 

a Reaction conditions: steroid (1.0 mg, 1.0 eq.), α-D-glucuronyl fluoride (5.0 eq.), E. coli glucuronylsynthase 

(E504G) (0.2 mg mL-1), tert-butanol (10% v/v), sodium phosphate buffer (50 mM, pH 7.5), 37 oC, 2 days. b 

Determined by 400 MHz 1H NMR integration of the key protons following OASIS WAX SPE. c 10 eq. of sugar. 

d A second addition of enzyme after 24 h, then incubated for a further 24 h. 
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On the other hand, one example of steroid sulfate glucuronide, 5α-androstane-3β,17β-diol 

3-sulfate 17-glucuronide, was also successfully prepared using the glucuronylsynthase 

enzyme 10. The synthesis started with a sodium borohydride reduction of epiandrosterone 

(EA) sulfate, followed by the glucuronylation reaction using the glucuronylsynthase enzyme 

and α-D-glucuronyl fluoride sugar. This steroid sulfate glucuronide was only prepared to 

then show the selectivity of Pseudomonas aeruginosa arylsulfatase (PaS) enzyme in 

hydrolysing the sulfate group and not the glucuronide 10. A library of nine steroid sulfate 

glucuronides was then synthesised using the same method by Mr. Andy Pranata as part of 

a BSc (Honours) project. However, only four of them were successfully purified (> 95%) and 

characterised by NMR and MS. As part of subsequent MPhil studies, these examples were 

all subject to larger scale synthesis, purification and characterisation. 

All these promising results were then continued by Mr. Andy Pranata to complete a library 

of ten steroid bisglucuronides as well as the other bisconjugate metabolite family, steroid 

sulfate glucuronides. Specific contributions of Mr. Andy Pranata are listed below: 

- The synthesis, purification, and characterisation of ten steroid bisglucuronides 

through a one-step or step-wise enzymatic glucuronylation reaction. 

- An investigation of the stepwise glucuronylation reaction was performed with the help 

from undergraduate project student, Ms. Erin Westley to investigate which order of 

glucuronylation was preferred to form steroid bisglucuronides.  

- A simple inhibition study was conducted to give evidence that 5α-androstane-3β,17α-

diol 3-glucuronide could inhibit the glucuronylation reaction of DHEA to form DHEA 

glucuronide without producing any 5α-androstane-3β,17α-diol bisglucuronide. 

- The synthesis and characterisation of {18O}-α-D-glucuronyl fluoride and 

epiandrosterone {18O}-glucuronide.  

- The synthesis, purification, and characterisation of ten steroid sulfate glucuronides 

through a sulfation, reduction, and glucuronylation reactions.  

- LC-MS/MS study of all compounds described in the paper (some {13C} labelled 

compounds were synthesised by Mr. Christopher C. Fitzgerald).  

- Comparing synthesised materials with one urine sample by LC-MS/MS to detect two 

endogenous steroid sulfate glucuronides.  

This publication aimed to give easier access to the analytical laboratory for reference 

materials and internal standards either for anti-doping or any medical research purposes. 

Synthesised samples were sent to Dr. Oscar J. Pozo at the Integrative Pharmacology and 
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Systems Neuroscience Group, IMIM, Hospital del Mar, Doctor Aiguader 88, Barcelona, 

Spain for further MS study and also applying these types of metabolites in medical research. 

A copy of supporting information containing all the experimental data alongside with 1H 

NMR, 13C NMR, LRMS, and IR spectra is available electronically and will be published 

online.  
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2.2. Synthesis of Steroid Bisglucuronide and Sulfate Glucuronide Reference 

Materials: Unearthing Neglected Treasures of Steroid Metabolism 

Compound and reference numbers contained within the manuscript and associated 

supplementary material are relevant within these documents and not elsewhere in this 

thesis. 
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Abstract 

Doubly or bisconjugated steroid metabolites have long been known as minor components 

of the steroid profile that have traditionally been studied by laborious and indirect 

fractionation, hydrolysis and gas chromatography-mass spectrometry (GC-MS) analysis. 

Recently, the synthesis and characterisation of steroid bis(sulfate) (aka disulfate or bis-

sulfate) reference materials enabled the liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) study of this metabolite class and the development of a constant ion loss (CIL) 

scan method for the direct and untargeted detection of steroid bis(sulfate) metabolites. The 

CIL scan method has been employed to study the endogenous steroid profile, for the 

detection of exogenous steroid administration in anti-doping analysis, and for the pre-natal 

diagnosis of inborn errors of steroid metabolism by the analysis of maternal urine. Methods 

for direct LC-MS/MS detection of other bisconjugated steroids, such as steroid 

bisglucuronide and mixed steroid sulfate glucuronide metabolites, have great potential to 

reveal a more complete picture of the steroid profile. However, access to steroid 

bisglucuronide or sulfate glucuronide reference materials necessary for LC-MS/MS method 

development, metabolite identification or quantification is severely limited. In this work, ten 

steroid bisglucuronide and ten steroid sulfate glucuronide reference materials were 

synthesised through an ordered combination of chemical sulfation and/or enzymatic 

glucuronylation reactions. All compounds were purified and characterised using NMR and 

MS methods. Chemistry for the preparation of stable isotope labelled steroid {13C6}-

glucuronide internal standards has also been developed and applied to the preparation of 

two selectively mono-labelled steroid bisglucuronide reference materials used to 

characterise more completely MS fragmentation pathways. The electrospray ionisation and 

fragmentation of steroid bisglucuronide and sulfate glucuronide reference materials has 

been studied. Preliminary targeted LC-MS/MS analysis of the reference materials prepared 

revealed pregn-5-ene-3β,20R/S-diol 3-sulfate 20-glucuronide as endogenous human 

urinary metabolites.  
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Steroid bisglucuronide, steroid sulfate glucuronide, steroid conjugate, phase II metabolism, 
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Abbreviations 

CID = collision induced dissociation, CIL = constant ion loss, DHEA = 

dehydroepiandrosterone, EA = epiandrosterone, E. coli = Escherichia coli, GC-MS = gas 

chromatography-mass spectrometry, LC-MS = liquid chromatography-mass spectrometry, 

NL = neutral loss, PORD = cytochrome P450 Oxido-Reductase Deficiency, SIM = single ion 

monitoring, SLOS = Smith-Lemli-Opitz Syndrome, SPE = solid phase extraction, SRM = 

selected reaction monitoring, STSD = Steroid Sulfatase Deficiency, UPLC-MS/MS = ultra-

performance liquid chromatography–tandem mass spectrometry, WAX = weak anion 

exchange. 

 

Highlights 

 Ten steroid bisglucuronide reference materials synthesised and characterised 

 Ten steroid sulfate glucuronide reference materials synthesised and characterised 

 Stable isotope labelled internal standards using 18O and 13C prepared 

 Electrospray ionisation and fragmentation of reference materials studied 

 Pregn-5-ene-3β,20R/S-diol 3-sulfate 20-glucuronide confirmed in human urine 
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Introduction 

Steroids are a large family of compounds with diverse roles as lipids, hormones and 

secondary metabolites, and as a result, numerous functions in biology and medicine. Many 

current therapeutic interventions target steroid biosynthesis or signalling pathways and this 

knowledge is also exploited in steroid abuse that remains a major problem for world sport 

and wider society [1]. In mammalian systems, steroids undergo two phases of metabolism 

[2]. Phase I metabolism involves changes to the steroidal carbon skeleton including the 

oxidation and reduction of functional groups. This metabolic change intersects and interacts 

with phase II metabolism involving the conjugation of steroids with highly polar, charged 

groups, commonly sulfate [3],[4] and glucuronic acid [5],[6]. Phase II metabolism is the major 

step that increases steroid hydrophilicity, allowing them to be rapidly and efficiently excreted 

from the body in biological fluids. At least 97% of steroids excreted in urine are present as 

some form of phase II conjugate [7]. However, phase II conjugates also serve other 

important roles in steroid transport and regulation, with steroids such as 

dehydroepiandrosterone sulfate and estrone sulfate serving as an endogenous depot in 

steroid hormone metabolism [8],[9]. 

Traditionally, steroid analysis has been conducted using gas chromatography-mass 

spectrometry (GC-MS) [10]. However, phase II conjugates such as steroid sulfates and 

steroid glucuronides are not volatile or thermally stable enough for direct GC-MS analysis. 

For this reason, chemical or enzymatic deconjugation of these metabolites to liberate the 

phase I metabolites, prior to derivatisation and GC-MS analysis, is typically employed [7]. 

The routine deconjugation of phase II metabolites has several drawbacks. Although acid 

solvolysis provides a general method of deconjugation, it cannot discriminate between 

sulfate and glucuronide conjugates, and is also known to degrade sensitive analytes [2],[11]. 

Milder enzymatic hydrolysis with Escherichia coli (E. coli) β-glucuronidase neglects the 

contribution of steroid sulfate metabolites and can result in incomplete hydrolysis [12], while 

the use of crude enzyme preparations containing glucuronidase and sulfatase enzymes can 

also lead to undesired steroid conversions [7]. More recently, purified bacterial arylsulfatase 

enzymes have been developed [13] to selectively hydrolyse steroid sulfates under 

conditions compatible with those employed for E. coli β-glucuronidase hydrolysis, but further 

work is required to establish the scope of these methods for analytical applications [14]. 

More generally, the routine use of deconjugation is undesirable as it destroys any 

information available from the study of conjugation patterns or levels. 
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Rapid advances in liquid chromatography-mass spectrometry (LC-MS) technology provide 

an improved method for the direct detection of the intact phase II conjugates since they 

ionise well by electrospray ionisation (ESI), and time-consuming hydrolysis and 

derivatisation steps are not required [15]. Typically, mono-conjugated steroid sulfate and 

glucuronide conjugates have been studied using this approach [12],[16]. On the other hand, 

doubly conjugated steroids that are also present as a minor component of the steroid profile, 

have generally only been studied through a laborious process of chromatographic 

fractionation and solvolysis [17],[18], typically coupled to GC-MS analysis [19],[20]. These 

steroidal conjugates (Figure 1) including bis(sulfates), sulfate glucuronides, bisglucuronides 

(single conjugation at two sites), or diglucuronides (double conjugation at one site) have 

received little attention over past decades, in large part due to an absence of suitable 

reference materials to aid analytical method development.  

In 2017, an ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-

MS/MS) constant ion loss (CIL) scan method for the direct and untargeted detection of 

steroid bis(sulfate) metabolites was reported [21]. This method revealed a wide range of 

endogenous bis(sulfates) including examples from the estrane, androstane, and pregnane 

steroid families. The CIL scan method was applied to identify metabolites associated with 

sports doping and has also been employed in the analysis of maternal urine for the prenatal 

diagnosis of inborn errors of steroid biosynthesis associated with Smith-Lemli-Opitz 

Syndrome (SLOS), Steroid Sulfatase Deficiency (STSD), and cytochrome P450 Oxido-

Reductase Deficiency (PORD) [22].  

Access to reference materials is central in the development of MS methods to detect or 

quantify steroidal metabolites. In the study described above, a collection of 23 synthetically 

derived steroid bis(sulfates) was used to investigate the ionisation and fragmentation of this 

family, leading to the development of the selective, direct and untargeted CIL scan method 

[21]. Currently, well-characterised reference materials for the other bisconjugate families are 

not readily available. This limits analytical MS method development and precludes the 

unambiguous identification or quantification of these under-explored compounds. Few 

examples of the quantitative synthesis of steroid bisglucuronides [23],[24],[25], sulfate 

glucuronides [26],[27],[28] or diglucuronides [29] have been reported. Examples of small 

scale, qualitative chemical and biochemical synthesis of steroid bisglucuronides 

[30],[31],[29],[32],[33] and sulfate glucuronides [34] have also been reported where the 

products have generally not been fully purified or characterised spectroscopically. 
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In this work, the synthesis and characterisation of ten steroid bisglucuronide and ten steroid 

sulfate glucuronide reference materials is reported. The MS ionisation and fragmentation of 

these metabolites has been explored and two of these steroid sulfate glucuronides have 

been confirmed as endogenous human urinary metabolites by LC-MS/MS analysis. In 

addition, the development of stably labelled glucuronide reference materials is described, 

including selectively mono-labelled bisglucuronides, suitable for use as internal standards 

or as probes to interrogate the site selectivity of fragmentation processes. This chemistry 

will facilitate the development of new LC-MS methods for the direct detection of 

bisconjugates and open avenues in the study of this fascinating but neglected family of 

steroid metabolites in fields such as sports drug testing and medical science.  

 

Figure 1. Examples of singly and doubly conjugated steroid metabolites 

Materials and methods 

Materials and instruments associated with the chemical synthesis of bisconjugates are 

reported in the supplementary material (SI) section. 
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2.1. LC-MS/MS method for steroid bisconjugate analysis 

Negative mode liquid chromatography-mass spectrometry (LC-MS) analysis was 

undertaken using a Waters 2695 Alliance Separations Module coupled to a Waters Acquity 

triple quadruple mass spectrometer and equipped with a Waters Symmetry C18 column 

(150 x 2.1 mm, 5 µm), eluting with a gradient consisting of the following mobile phases, A: 

methanol, B: water, both containing 0.01% formic acid and 10 mM ammonium formate, 

gradient: 0-9 min A-B (30:70 v/v) to A-B (90:10 v/v), 9-10 min A-B (90:10 v/v) to A-B (30:70 

v/v), 5 min re-equilibration, flow rate 0.3 mL min-1, and column temperature at 30 °C. Steroid 

sulfate glucuronides or steroid bisglucuronides were monitored for the mono-anion ([M-H]-, 

cone voltage = 70 V) and di-anion ([M-2H]2-, cone voltage = 26 V) using ESI in negative 

scan MS (m/z = 150-1000), targeted MS/MS mode (m/z = 50-700, collision energy = 10-50 

eV) or selected reaction monitoring mode (collision energy = 10-20 eV, see Table S6 in SI) 

with 4000 V capillary voltage. 

2.2. Urine sample preparation  

The collection of human urine samples was conducted with approval of the Australian 

National University Human Research Ethics Committee (protocol 2013/654) and in 

accordance with the National Statement on Ethical Conduct in Human Research (2007) of 

the National Health and Medical Research Council. The procedure was adapted from the 

literature with minor modifications [35]. An aliquot of urine (2 mL) was fortified with 

nandrolone 17-sulfate (100 ng mL-1) internal standard, treated with sodium phosphate buffer 

(50 mM, pH 7.5, 1 mL) and then centrifuged (2000 rpm, 5 min). The supernatant was then 

loaded onto a WAX SPE cartridge (3 cc) that was pre-conditioned with methanol (1 mL) and 

water (2 mL), and then washed with aqueous sodium hydroxide solution (0.1 M, 2 mL), 

sodium phosphate buffer (50 mM, pH 7.5, 2 mL), water (2 mL), and methanol (2 mL). The 

urinary steroid conjugates were then eluted with a solution of ethyl 

acetate:methanol:diethylamine (25:25:1 v/v/v, 2 mL). Concentration under a stream of 

nitrogen at 60 °C afforded a residue, which was reconstituted in water (200 µL) and 

transferred to a sealed vial for subsequent analysis by LC-MS/MS according to Section 2.1 

above. 

2.3. Glucuronylation inhibition study  

To a tube containing sodium phosphate buffer (50 mM, pH 7.5, 60 µL) and 

dehydroepiandrosterone (DHEA) 1 solution in tert-butanol (ci = 500 µM, 10 µL, cf = 50 µM) 

was added diluted E. coli E504G glucuronylsynthase in sodium phosphate buffer (ci = 0.6 

mg mL-1, 10 µL, cf = 0.06 mg mL-1). In another tube, α-D-glucuronyl fluoride 2 solution in 
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sodium phosphate buffer (ci = 500 µM, 10 µL, cf = 50 µM) was mixed with 5α-androstane-

3β,17α-diol 3-glucuronide 3 solution in sodium phosphate buffer (ci = 200 µM, 10 µL, cf = 20 

µM). The α-D-glucuronyl fluoride 2 and additive 5α-androstane-3β,17α-diol 3-glucuronide 3 

mix was then added to the DHEA 1 and enzyme mix. Another four reactions were also set 

up by varying the final concentration of the additive to 0, 5, 10, and 15 µM. Negative controls 

were performed with only DHEA 1, enzyme, and sodium phosphate buffer, while external 

standards were prepared with DHEA 1, enzyme, sodium phosphate buffer, and DHEA 

glucuronide 4 (ci = 50 µM, 10 µL, cf = 5 µM). Reactions, negative controls, and external 

standards were then incubated in water bath at 37 °C for 10 min, and immediately quenched 

with methanol (100 µL) containing 50 µM etiocholanolone sulfate as internal standard. The 

quenched reaction mixture was centrifuged for 10 min (20000g), and then transferred to a 

96-well plate ready for mass spectrometry analysis.  

The production of DHEA glucuronide 4 was assayed by liquid chromatography-mass 

spectrometry (LC-MS) using an Agilent 1290 Infinity LC injector, HTS sampler and 1260 

Infinity UPLC system coupled to an Agilent 6120 quadrupole mass spectrometer. 

Chromatography was performed with an Agilent Poroshell 120 C18 column (30 mm x 2.1 

mm, 2.7 µm) and a gradient of mobile phases, A: 10% v/v methanol:water, B: 90% v/v 

methanol:water, 10 mM ammonium acetate in both, gradient: 0-1 min A-B (58:42 v/v), 1-6 

min A-B (58:42 v/v) to A-B (20:80 v/v), 6-7 min A-B (20:80 v/v) to B (100 v/v), 7-8 min held 

at B (100 v/v), 8-9 min B (100 v/v) to A-B (58:42 v/v), 5 min re-equilibration, flow rate 0.2 mL 

min-1, and column temperature at 30 °C. The mono-anions ([M-H]-) of DHEA glucuronide 4 

(m/z = 463.2), 5α-androstane-3β,17α-diol bisglucuronide 5 (m/z = 643.3), and 

etiocholanolone sulfate (m/z = 369.2) were monitored using ESI in negative single ion 

monitoring (SIM) MS mode with 200 V fragmentor and 3000 V capillary voltage. 

2.4. Synthesis 

2.4.1. General procedure for small scale steroid conjugate purification by SPE 

This step was performed to separate a steroid conjugate (such as a steroid sulfate, steroid 

glucuronide, or steroid bisglucuronide) from any unreacted starting steroid or steroid diol 

after a conjugation reaction (sulfation or glucuronylation). The procedure was adapted from 

literature methods [32],[36]. A WAX SPE cartridge (6 cc) was pre-conditioned with methanol 

(5 mL) followed by water (15 mL). The reaction mixture was then loaded onto the cartridge 

and eluted under a positive pressure of nitrogen at a flow rate of approximately 2 mL min-1 

with the following solutions: formic acid in water (2% v/v, 15 mL), water (15 mL), methanol 

(15 mL) and saturated aqueous ammonia solution in methanol (5% v/v, 15 mL). The 
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methanolic ammonia fraction was concentrated in vacuo to yield the desired steroid 

conjugate as the corresponding ammonium salt.  

2.4.2. General procedure for determining conversion by 1H NMR analysis 

This step was performed to calculate the ratio of steroid conjugate (steroid sulfate, steroid 

glucuronide, or steroid bisglucuronide) to steroid or steroid diol remaining after a conjugation 

reaction (sulfation or glucuronylation). The procedure employed a modified WAX SPE 

protocol (general procedure 2.4.1) eluting with only formic acid in water (2% v/v, 15 mL), 

water (15 mL) and saturated aqueous ammonia solution in methanol (5% v/v, 15 mL), 

followed by concentration of the methanolic ammonia fraction to yield a mixture containing 

both the starting steroid or steroid diol and the corresponding steroid conjugate as the 

ammonium salt. A 1H NMR spectrum was obtained and integration of a suitable signal 

(typically C3-H or C17-H) from both starting steroid or steroid diol and steroid conjugate was 

used to determine the percent conversion of the sulfation or glucuronylation reaction. 

2.4.3. General procedure for C18 SPE purification of a steroid sulfate glucuronide or steroid 

bisglucuronide 

A C18 SPE cartridge (3 cc) was pre-conditioned with methanol (2 mL) followed by water (6 

mL). The solution of steroid sulfate glucuronide or steroid bisglucuronide mixture in water (1 

mg mL-1, 1 mL) was then loaded onto the cartridge and eluted under a positive pressure of 

nitrogen at a flow rate of approximately 2 mL mL-1 with methanol:water (10-50% v/v, 3 mL), 

and methanol (3 mL). The methanol:water fraction was concentrated in vacuo to yield the 

desired steroid sulfate glucuronide or steroid bisglucuronide as the corresponding 

ammonium salt. 

2.4.4. General procedure for the small scale reduction reaction of a steroid sulfate or steroid 

glucuronide containing a saturated ketone, with purification by SPE 

The procedure was adapted from the literature [36]. A solution of steroid sulfate or steroid 

glucuronide (3.2-19 µmol) in methanol (100 µL) was treated by the addition of NaBH4 over 

1 minute (7.0 mg, 0.19 mmol) with cooling on ice. After the vigorous reaction had subsided, 

the reaction was capped, allowed to warm to room temperature and stirred for 16 h. The 

reaction was quenched by the slow addition of water (3 mL), adjusted to pH 7 (universal 

indicator strips) by the addition of aqueous hydrochloric acid (0.1 M, 2 mL) and subjected to 

SPE purification by general procedure 2.4.2 to afford the desired steroid diol monosulfate or 

monoglucuronide as the corresponding ammonium salt. A 1H NMR spectrum was obtained 
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and integration of a suitable signal (typically C19-H3) from both the steroidal ketone and 

alcohol was used to determine the percent conversion of the reduction reaction. 

2.4.5. General procedure for the small scale glucuronylation reaction of a steroid, steroid 

diol, steroid diol monosulfate, or steroid diol monoglucuronide with purification by SPE 

The procedure was adapted from the literature [32]. The steroid, steroid diol, steroid diol 

monosulfate, or steroid diol monoglucuronide (2.1-20 µmol, 0.7 mM final concentration) in a 

tube was dissolved in tert-butanol (10% v/v), and sodium phosphate buffer (50 mM, pH 7.5, 

~80% v/v), followed by E. coli E504G glucuronylsynthase (final concentration of 0.2 mg 

mL-1). Finally, α-D-glucuronyl fluoride 2 (5.0 eq.) was dissolved in sodium phosphate buffer 

(50 mM, pH 7.5, ~10% v/v) and added to the reaction. The reaction was incubated without 

agitation at 37 °C for 2 days. The reaction mixture was then subjected to a series of SPE 

purification steps as detailed in the experimental method depending on which starting 

material was employed. 

2.4.6. 5α-Androstane-3β,17β-diol bisglucuronide, ammonium salt 6 

2.4.6.1 Method A. The reaction was conducted with 5α-androstane-3β,17β-diol 7 [21] (5.0 

mg, 17 µmol, see SI section) by general procedure 2.4.5. Purification of the reaction by 

general procedure 2.4.2 gave a mixture of the title compound 6 and 5α-androstane-3β,17β-

diol 3-glucuronide 8 in a 2:1 ratio as determined by 400 MHz 1H NMR integration of the C20-

H and C26-H protons (no starting steroid diol 7 observed). Performing the C18 purification 

procedure eluting with methanol:water (25% v/v) by general procedure 2.4.3 afforded the 

title compound 6 in pure form. Rf 0.15 (5:2:1 ethyl acetate:methanol:water); 1H NMR (400 

MHz, CD3OD): δ 4.41 (1H, d, J 7.7 Hz, C20-H), 4.35 (1H, d, J 7.8 Hz, C26-H), 3.80-3.72 

(2H, m, C3-H and C17-H), 3.57 (1H, d, J 9.3 Hz, C24-H), 3.54 (1H, d, J 9.6 Hz, C30-H), 

3.46-3.36 (4H, m, C23-H, C29-H, C22-H, C28-H), 3.21-3.15 (2H, m, C21-H and C27-H), 

2.05 (1H, m), 1.98-1.89 (2H, m), 1.74-0.88 (18H, m), 0.85 (3H, s, C18-H3), 0.83 (3H, s, C19-

H3), 0.67 (1H, m); 13C NMR (175 MHz, CD3OD): δ 176.4 (C25 or C31), 176.3 (C25 or C31), 

104.6 (C26), 102.0 (C20), 89.7 (C17), 78.9 (C3), 77.9 (C22 or C28), 77.9 (C22 or C28), 76.5 

(C24 or C30), 76.3 (C24 or C30), 75.3 (C27), 75.0 (C21), 73.8 (C23 or C29), 73.8 (C23 or 

C29), 55.9, 52.3, 46.0, 44.4, 38.9, 38.3, 36.8, 36.8, 35.3, 32.9, 30.3, 30.0, 29.6, 24.3, 22.0, 

12.8 (C18), 12.1 (C19); LRMS (-ESI): m/z 643 (90%, [C31H47O14]-), 467 (15%, [C25H39O8]-), 

321 (100%, [C31H46O14]2-); HRMS (-ESI): calcd. for [C31H47O14]- 643.2966, found 643.2966 

The steroid bisglucuronides 9-16 (Figure 2) were prepared using similar methods (see SI 

section) 
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Figure 2. Steroid bisglucuronides 5, 6, 9-16 synthesised in this work. a Synthesis performed 

by sequential glucuronylation, b Synthesis performed in one step with % conversion from 

steroid diol to conjugated steroid diols shown, c One-step reaction started with a 1:9 ratio of 

the 3α:3β alcohol diastereomers, d One-step reaction started with a 1:6 ratio of the 3α:3β 

alcohol diastereomers, e One-step reaction started with a 2:1 ratio of the 20S:20R alcohol 

diastereomers, f One-step reaction started with a 1:6 ratio of the 20S:20R alcohol 

diastereomers. 

2.4.6.2 Method B. The reaction was conducted with 5α-androstane-3β,17β-diol 17-

glucuronide, ammonium salt [13] (derived in 19% conversion from dihydrotestosterone, 

assumed 3.2 µmol, a 1:9 ratio of the 3α:3β diastereomers, see SI section) by general 

procedure 2.4.5. Purification of the reaction by general procedure 2.4.2 gave the title 

compound 6 as a colourless solid with a 90% conversion overall (> 98% conversion from 

3β-diol monoglucuronide to the bisglucuronide, with the 3α-diol monoglucuronide 

unreacted) as determined by 400 MHz 1H NMR integration of the C3-H protons. Performing 
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the C18 purification procedure eluting with methanol:water (25% v/v) by general procedure 

2.4.3 afforded the title compound 6 in pure form.  

2.4.7. 5α-Androstane-3β,17β-diol 3{13C6},17-bisglucuronide, ammonium salt {13C6}-6 

The reaction was conducted with 5α-androstane-3β,17β-diol 17-glucuronide, ammonium 

salt [13] (1.0 mg, 2.1 µmol, a 1:7 ratio of the 3α:3β diastereomers, see SI section) and {13C6}-

α-D-glucuronyl fluoride {13C6}-2 by general procedure 2.4.5. Purification of the reaction by 

general procedure 2.4.2 gave the title compound {13C6}-6 as a colourless solid with 87% 

conversion overall (> 98% conversion from 3β-diol monoglucuronide to the bisglucuronide, 

with the 3α-diol monoglucuronide unreacted) as determined by 400 MHz 1H NMR integration 

of the C3-H protons. Performing the C18 purification procedure eluting with methanol:water 

(25% v/v) by general procedure 2.4.3 afforded the title compound {13C6}-6 in pure form. 1H 

NMR (700 MHz, CD3OD): δ 4.41 (1H, dd, J 158.1, 7.4 Hz, C20-H), 4.35 (1H, d, J 7.8 Hz, 

C26-H), 3.81-3.73 (2H, m, C3-H and C17-H), 3.69-3.05 (4H, m, C24-H, C23-H, C22-H, C21-

H), 3.55 (1H, d, J 9.8 Hz, C30-H), 3.43 (1H, t, J 9.3 Hz, C29-H), 3.36 (1H, t, J 9.3 Hz, C28-

H), 3.19 (1H, dd, J 9.1, 8.0 Hz, C27-H), 2.05 (1H, m), 2.00-1.87 (2H, m), 1.79-1.46 (7H, m), 

1.46-1.07 (8H, m), 1.06-0.86 (3H, m), 0.85 (3H, s, C18-H3), 0.83 (3H, s, C19-H3), 0.67 (m, 

1H); 13C NMR (175 MHz, CD3OD): δ 175.3 (m, C31), 104.7 (C20), 101.6 (m, C26), 89.8, 

78.5-73.0 (4C, m, C27, C28, C29, C30), 55.9, 52.3, 46.0, 44.4, 38.9, 38.3, 36.8, 36.8, 35.3, 

32.9, 30.8, 30.3, 30.0, 29.7, 24.3, 22.0, 12.8 (C18), 12.1 (C19), C21-25 obscured by C27-

31 signals; LRMS (-ESI): m/z 324 ([C25{13C6}H46O14]2-); HRMS (-ESI): m/z calcd. for 

[C25{13C6}H47O14]- 649.3173, found 649.3169. 

The steroid {13C6}-bisglucuronide {13C6}-9 and {13C6}-monoglucuronides {13C6}-4 and {13C6}-

17-{13C6}-20 (Figure 3) were prepared using similar methods (see SI section). 
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Figure 3. Synthesised 18O and 13C labelled steroid bisglucuronides {13C6}-6 and {13C6}-9 and 

monoglucuronides {13C6}-4, {13C6}-17-{13C6}-20 and {18O}-17 with the 18O or 13C labelled 

glucuronide unit highlighted in red.  

2.4.8. 5α-Androstane-3β,17β-diol 3-sulfate, ammonium salt 21 

The reaction was conducted with epiandrosterone (EA) sulfate, ammonium salt [36] (derived 

from EA 22, 5.5 mg, 19 µmol, see SI section) by general procedure 2.4.4 to yield the title 

compound 21 as a colourless solid with > 98% conversion. Rf 0.42; 1H NMR (400 MHz, 

CD3OD): δ 4.25 (1H, tt, J 11.3, 4.9 Hz, C3-H), 3.56 (1H, t, J 8.6 Hz, C17-H), 2.05-0.88 (21H, 

m), 0.86 (3H, s, C19-H3), 0.72 (3H, s, C18-H3), 0.67 (1H, ddd, J 12.4, 10.4, 4.1 Hz); 13C 

NMR (100 MHz, CD3OD): δ 82.5 (C17), 79.7 (C3), 55.9, 52.3, 46.4, 44.1, 38.3, 38.1, 36.9, 

36.6, 36.4, 32.8, 30.7, 29.8, 24.3, 21.9, 12.7 (C18), 11.7 (C19), one carbon peak obscured 

or overlapping; LRMS (-ESI): m/z 371 (100%, [C19H31O5S]-); HRMS (-ESI): calcd. for 

[C19H31O5S]- 371.1892, found 371.1887. 

2.4.9. 5α-Androstane-3β,17β-diol 3-sulfate 17-glucuronide, ammonium salt 23 

The reaction was conducted with 5α-androstane-3β,17β-diol 3-sulfate, ammonium salt 21 

(derived from EA 22, 5.5 mg, 19 µmol) by general procedure 2.4.5. Purification of the 

reaction by general procedure 2.4.2 gave the title compound 23 as a colourless solid with 

93% conversion as determined by 400 MHz 1H NMR integration of the C18-H3 protons. 

Performing the C18 purification procedure eluting with methanol:water (28% v/v) by general 

procedure 2.4.3 afforded the title compound 23 in pure form. Rf 0.29 (5:2:1 ethyl 

acetate:methanol:water); 1H NMR (400 MHz, CD3OD): δ 4.35 (1H, d, J 7.8 Hz, C20-H), 4.24 

(1H, tt, J 11.3, 4.7 Hz, C3-H), 3.79 (1H, t, J 8.6 Hz, C17-H), 3.53 (1H, d, J 9.4 Hz, C24-H), 

3.56-3.37 (2H, m, C23-H and C22-H), 3.18 (1H, t, J 8.4 Hz, C21-H), 2.11-0.88 (21H, m), 

0.85 (3H, s, C19-H3), 0.83 (3H, s, C18-H3), 0.69 (1H, ddd, J 12.4, 10.4, 4.1 Hz); 13C NMR 

(175 MHz, CD3OD): δ 104.6 (C20), 89.7 (C17), 79.7 (C3), 78.0 (C22), 75.3 (C21), 73.8 

(C23), 55.8, 52.2, 46.3, 44.4, 38.8, 38.3, 36.8, 36.6, 36.4, 32.8, 29.8, 29.8, 29.6, 24.3, 22.0, 

12.7, 12.1, C25 and C24 not observed; LRMS (-ESI): m/z 569 (10%, [C25H38O11SNa]-), 547 

(5%, [C25H39O11S]-), 471 (15%, [C23H35O8S]-), 371 (40%, [C19H31O5S]-), 273 (100%, 

[C25H38O11S]2-); HRMS (-ESI): calcd. for [C25H39O11S]- 547.2213, found 547.2218. 

The steroid sulfate glucuronides 24-32 (Figure 4) were prepared using similar methods (see 

SI section) 
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Figure 4. Steroid sulfate glucuronides 23-32 and {13C6}-23 synthesised in this work. a 

Synthesis was performed in three steps by sulfation, reduction, and glucuronylation, b 

Synthesis was performed in two steps by selective sulfation followed by glucuronylation, c 

Synthesis was performed via tosylhydrazone formation, d Ratio of steroid diol monosulfate 

diastereomers after reduction, e The % conversion of the glucuronylation step is shown, f 

Glucuronylation was performed using {13C6}-α-D-glucuronyl fluoride {13C6}-2. 

2.4.10. 5α-Androstane-3β,17β-diol 3-sulfate 17{13C6}-glucuronide, ammonium salt {13C6}-23 

The reaction was conducted with 5α-androstane-3β,17β-diol 3-sulfate, ammonium salt 21 

(3.0 mg, 7.7 µmol) and {13C6}-α-D-glucuronyl fluoride {13C6}-2 by general procedure 2.4.5. 

Purification of the reaction by general procedure 2.4.2 gave the title compound {13C6}-23 as 

a colourless solid with 21% conversion as determined by 400 MHz 1H NMR integration of 

the C18-H3 protons. Performing the C18 purification procedure eluting with methanol:water 

(20% v/v) by general procedure 2.4.3 afforded the title compound {13C6}-23 in pure form. 1H 

NMR (700 MHz, CD3OD): δ 4.48-4.19 (2H, m, C17-H and C20-H), 3.79 (1H, m), 3.63-3.37 

(3H, m), 3.15 (1H, m), 2.11-1.94 (3H, m), 1.83-1.74 (2H, m), 1.71-1.48 (4H, m), 1.45-1.13 
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(9H, m), 1.05-0.85 (3H, m), 0.85 (3H, s, C18-H3), 0.83 (3H, s, C19-H3), 0.69 (1H, m); 13C 

NMR (175 MHz, CD3OD): δ 176.4 (m, C25), 104.6 (m, C20), 89.7, 79.7, 78.8-71.85 (4C, m, 

C21, C22, C23, C24), 55.8, 52.2, 46.3, 44.4, 38.9, 38.3, 36.8, 36.6, 36.4, 32.8, 29.8, 29.8, 

29.6, 24.3, 22.0, 12.7 (C18), 12.1 (C19); LRMS (-ESI): m/z 276 (100%, 

[C19{13C6}H38O11S]2-); HRMS (-ESI): m/z calcd. for [C19{13C6}H39O11S]- 553.2316, found 

553.2309. 

Results 

3.1. Synthesis of steroid bisglucuronide reference materials 

Glucuronylation was performed enzymatically using α-D-glucuronyl fluoride 2 as the 

glucuronide donor and the E. coli glucuronylsynthase as catalyst [32]. In earlier work, this 

method was applied to hydroxylated keto-steroids with various structures and 

stereochemistries, and successfully produced a library of 14 steroid monoglucuronides with 

5-90% conversion [32]. Also in earlier work, this method was applied to estradiol and gave 

a mixture of estradiol bisglucuronide 9, estradiol 3-glucuronide, and estradiol 17-glucuronide 

in 1.1:1.0:1.6 ratio. Given the success of this earlier trial, we initially sought to access a 

library of steroid bisglucuronides through the direct enzymatic glucuronylation of steroid 

diols. 

Steroid bisglucuronides in this study were generally synthesised in a single glucuronylation 

reaction of steroid diols using an excess α-D-glucuronyl fluoride 2 donor (5 eq.) and the 

glucuronylsynthase enzyme, as shown for 5α-androstane-3β,17β-diol 7 (Scheme 1) [32].  
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Scheme 1. One-step synthesis of 5α-androstane-3β,17β-diol bisglucuronide 6 from 5α-

androstane-3β,17β-diol 7 promoted by the E. coli glucuronylsynthase enzyme. 

After the reaction, solid-phase extraction (SPE) using an Oasis weak-anion exchange 

(WAX) cartridge was performed as outlined in general procedure 2.4.2 and the product 

mixture analysed by 1H NMR spectroscopy. All steroid diols gave > 98% conversion to 

conjugated steroid mixtures, with the exception of reactions targeting bisglucuronides 11 

and 12. The starting diols for the synthesis of bisglucuronides 11 and 12 contained mixtures 

of 3α and 3β alcohols, and the 3α alcohol did not react [32], thus lower conversions of 90% 

and 85%, respectively, were observed. Where required, a second WAX SPE purification 

was performed as outlined in general procedure 2.4.1 to remove the unreacted steroid diols. 

When the mixtures only contained conjugated steroid diols, 1H NMR integration could also 

provide a ratio of the steroid diol monoglucuronides and bisglucuronide formed. In the 

example shown in Scheme 1 above, bisglucuronide 6 and diol monoglucuronide 8 were 

produced in 2:1 ratio as determined by 1H NMR integration of the anomeric protons. 

Typically, the steroid bisglucuronide was the major product, except for bisglucuronide 11 

where a mixture of steroid diol monoglucuronides were the major products formed (Figure 

2). When 3β,17β- or 3β,20S-diols were available (bisglucuronides 6, 10, 11, 12, 14, 15), 

reactions produced bisglucuronide and diol 3-glucuronide, except for bisglucuronide 11 

where diol 17-glucuronide was also observed in the mixture. In contrast, when 3α,24- or 

3β,20R-diols were available (bisglucuronides 13 and 16), diol 20- or 24-glucuronides were 

present at the end of the reaction. These data suggested relative reactivity for the E. coli 

glucuronylsynthase-promoted glucuronylation that paralleled that revealed earlier by Ma et. 

al. [32], with 3β(5α), 3β(5-ene), 3(phenolic), 20R and 24 hydroxyl groups showing the 

highest reactivity, while 3α(5β), 17β, 17α and 20S hydroxyl groups showed lower reactivity, 

and 3α(5α) hydroxyl groups proved unreactive.  

To isolate pure steroid bisglucuronide from conjugated steroid diol mixtures, a C18 SPE 

method was used since it separated mixtures based on polarity, much like a reverse-phase 

chromatography. The more polar compound (steroid bisglucuronide) was eluted by lower 

concentrations of methanol in water. While the less polar compound in the mixture (steroid 

diol monoglucuronides) were subsequently eluted with 100% methanol. For steroid 

bisglucuronides with similar carbon skeletons such as 5α-androstanes (5 and 6), androst-

4/5-enes (10 and 11), estr-4-ene (12), and pregnane (14) types, the bisglucuronide could be 

eluted selectively with 15-25% v/v methanol in water. A lower methanol concentration was 
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required to selectively elute estradiol bisglucuronide 9 (10% v/v methanol in water), while 

the less polar compounds based on cholane (13) and pregnene (15 and 16) skeletons 

needed 50% and 40% v/v methanol in water, respectively. At the end, nine pure steroid 

bisglucuronides 6 and 9-16 were obtained, with the exception of bisglucuronide 15 and 16, 

which were isolated as 20S:20R diastereomeric mixtures as the bisglucuronides were not 

separable using the C18 method. 

Although the enzymatic glucuronylation was successful in many cases, the bisglucuronide 

5 could not be prepared by this approach. Direct glucuronylation of 5α-androstane-3β,17α-

diol 33 afforded 5α-androstane-3β,17α-diol 3-glucuronide 3 as the sole conjugated product. 

This was despite earlier work [32], where several 17α-hydroxy steroids had been 

successfully subjected to enzymatic monoglucuronylation. A stepwise approach proved 

more productive. Glucuronylation of epidihydrotestosterone 34, followed by a reduction 

reaction using sodium borohydride, gave a 1:8 mixture of 3α- and 3β- alcohol diastereomers 

35. A second glucuronylation reaction was then performed, and as desired, the 

bisglucuronide 5 was obtained completing a library of ten steroid bisglucuronides.  
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Scheme 2. Step-wise synthesis of 5α-androstane-3β,17α-diol 3,17-bisglucuronide 5 from 

epidihydrotestosterone 34. 

Two hypotheses were advanced to explain the requirement for stepwise synthesis: the 

intermediate steroid 3β,17α-diol 3-glucuronide 3 substrate provided a poor fit for the enzyme 

active site preventing further glucuronylation, or that the same intermediate 3 bound 

unproductively in the enzyme active site and so inhibited further reaction. To explore this, a 

simple inhibition experiment was conducted using DHEA 1 as a model substrate and 5α-

androstane-3β,17α-diol 3-glucuronide 3 as a potential inhibitory additive (Scheme 3). The 

aim was to explore if increasing concentrations of 5α-androstane-3β,17α-diol 3-glucuronide 

3 could decrease the production of DHEA glucuronide 4. The additive 3 was investigated at 

final concentrations of 0, 5, 10, 15, 20 µM. The LC-MS analysis of these reactions showed 

that 15 and 20 µM of the additive 3 significantly reduced the production of DHEA glucuronide 

4 (p < 0.05), and by approximately 50% at 20 µM (Figure 5). As a steroidal alcohol, the 
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additive 3 could potentially serve as substrate, leading to the steroid bisglucuronide 5, but 

as expected based on attempted synthesis from steroidal diol 33, this was not observed by 

LC-MS. The results show that 5α-androstane-3β,17α-diol 3-glucuronide 3 inhibits E. coli 

glucuronylsynthase promoted synthesis of DHEA glucuronide 4, and implicates 

unproductive binding of this intermediate as the reason for the failed conversion of 5α-

androstane-3β,17α-diol 33 to the bisglucuronide 5 (Scheme 2). 

 

Scheme 3. Study of DHEA glucuronide 4 synthesis inhibition by additive 5α-androstane-

3β,17α-diol 3-glucuronide 3. 

 

Figure 5. Concentration of DHEA glucuronide 4 produced vs 5α-androstane-3β,17α-diol 3-

glucuronide 3 concentration. * p < 0.05 calculated using t-test (two-sample assuming 

unequal variances). 

The stepwise synthesis described above (Scheme 2) showed that order of glucuronylation 

was important for the E. coli glucuronylsynthase promoted synthesis of bisglucuronides. The 

one-step glucuronylation also proved unsuccessful for a number of other steroid diols 

including 5β-androstane-3α,17β-diol, androst-4-ene-3β,17α-diol, and 16α-hydroxy-DHEA. 

The stepwise approach was not investigated for these examples, but could be pursued in 

future research. Further investigations (see SI section) revealed that 5α-androstane-3β,17β-
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diol bisglucuronide 6 (Figure 2) was accessible from the 5α-androstane-3β,17β-diol 17-

glucuronide (90% conversion, section 2.4.6.2) and not the corresponding 3-glucuronide 8, 

estradiol bisglucuronide 9 was accessible from estradiol 3-glucuronide (> 98% conversion) 

and not the corresponding 17-glucuronide, and androst-4-ene-3β,17β-diol bisglucuronide 

11 was accessible from both androst-4-ene-3β,17β-diol 3-glucuronide (42% conversion) and 

17-glucuronide (60% conversion). Although longer, the stepwise method was observed to 

give cleaner product in the final step, and in one case, eliminated the need for C18 

purification to remove diol monoglucuronide by-products. Another advantage of the capacity 

to make a bisglucuronide from a specific steroid diol monoglucuronide intermediate was the 

potential to isotopically label one of the two glucuronide units of the bisglucuronide 

selectively to generate MS probes or internal standards. 

3.2. Synthesis of stable isotope labelled steroid monoglucuronides and bisglucuronides 

Introduction of stable isotope labels to the glucuronide unit would allow differentiation of the 

two conjugated positions of a bisglucuronide and enable the development of internal 

standards for both steroidal glucuronides, bisglucuronides and sulfate glucuronides. Stable 

labelling of the glucuronide unit would also afford other advantages. A range of stable 

isotope labelled monoglucuronides are available that incorporate deuterium atoms within 

the steroid skeleton. New synthetic routes are required for each labelled glucuronide 

involving multiple chemical steps. Labelling of the glucuronide unit would provide a more 

general method for the introduction of the label in the final step of the synthesis. Given this, 

we sought methods to stably label the α-D-glucuronyl fluoride 2 donor employed in the E. 

coli glucuronylsynthase-promoted glucuronylation reaction. 

Labelling was first attempted using 18O derived from labelled water. The α-D-glucuronyl 

fluoride 2 is prepared through an oxidation of α-D-glucosyl fluoride 36 using 

bis(acetoxy)iodobenzene (BAIB) and TEMPO in acetonitrile and sodium bicarbonate buffer. 

These modified conditions avoided the use of aqueous bleach as stoichiometric oxidant [37] 

and permitted a simple substitution with labelled water. Under these conditions, oxidation 

afforded a mixture of labelled {18O2}-α-D-glucuronyl fluoride, {18O1}-α-D-glucuronyl fluoride 

{18O}-2, and unlabelled α-D-glucuronyl fluoride 2 in approximately 20:12:1 ratio based on the 

LRMS (-ESI) analysis. Mechanistically, the formation of doubly labelled and unlabelled sugar 

in the reaction was consistent with the depicted equilibrium between aldehyde 37 and 

aldehyde hydrate {18O}-38 in the oxidation step (Scheme 4). The resulting 18O labelled α-D-

glucuronyl fluoride {18O}-2 mixture was reacted with EA 22 to form 18O labelled EA 
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glucuronide {18O}-17. Based on LRMS (-ESI), the ratio between EA {18O2}-glucuronide, EA 

{18O1}-glucuronide {18O}-17, and EA glucuronide 17 was again 20:12:1.  

 

Scheme 4. Proposed pathway for TEMPO-promoted oxidation of α-D-glucosyl fluoride 36 

to afford 18O labelled α-D-glucuronyl fluoride {18O}-2 with the 18O label highlighted in red. 

The 18O labelled α-D-glucuronyl fluoride {18O}-2 would be suitable for the preparation of a 

mass spectrometry probe to distinguish between the glucuronide units in a bisglucuronide, 

but could not serve as a stable isotope labelled internal standard due to the presence of 

unlabelled material. This prompted a second approach to label the α-D-glucuronyl fluoride 2 

by using a 13C label. A four-step synthesis of α-D-glucuronyl fluoride {13C6}-2 was employed, 

starting from {13C6}-D-glucose [37]. This method successfully produced the sugar with six 

13C isotopes fully incorporated based on LRMS (-ESI). This was higher than the theoretically 

expected labelling based on a lower threshold of at least 99 atom % 13C specified by the 

supplier (94.2% hexa-labelled {13C6}, 5.7% penta-labelled {13C5}, 0.1% tetra-labelled {13C4}, 

and 0.0% tri-labelled {13C3}). Two steroid bisglucuronides with one selectively labelled 

glucuronide unit were prepared: 5α-androstane-3β,17β-diol 3{13C6},17-bisglucuronide 

{13C6}-6 and estradiol 3,17{13C6}-bisglucuronide {13C6}-9. These were synthesised using the 

stepwise approach described above (Scheme 2) with the final glucuronylation step 

performed using {13C6}-α-D-glucuronyl fluoride {13C6}-2. In addition, five 13C labelled steroid 

monoglucuronides were also synthesised, including DHEA {13C6}-glucuronide {13C6}-4, EA 

{13C6}-glucuronide {13C6}-17, etiocholanolone {13C6}-glucuronide {13C6}-18, testosterone 

{13C6}-glucuronide {13C6}-19 and epitestosterone {13C6}-glucuronide {13C6}-20. The steroid 

monoglucuronides {13C6}-4, {13C6}-17-{13C6}-20, and bisglucuronides {13C6}-6 and {13C6}-9 

were also shown to have full incorporation of the {13C6}-glucuronide moiety based on LRMS 

(-ESI). The presence of the {13C6}-glucuronide moiety gave distinctive couplings in 1H and 

13C NMR spectra. In the 1H NMR spectrum, additional coupling was observed, when 

compared to the unlabelled compounds. This was caused by both short (one bond) and 

long-range (two or three bond) 13C-1H coupling, making the 1H NMR spectrum complex. 
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However, characterisation was more straightforward in the broadband decoupled 13C NMR 

spectrum, due to the characteristic splitting caused by 13C-13C couplings. For example, 

testosterone {13C6}-glucuronide {13C6}-19 had an apparent doublet of triplets (δ 176.6, J 58.8, 

4.9 Hz) observed for the carbonyl carbon, while a second doublet of triplets (δ 104.5, J 47.1, 

4.9 Hz) was observed for the anomeric carbon. Another four glucuronide carbons were 

observed as a multiplet (δ 71.9-79.0). As expected, these labelled glucuronide 13C NMR 

signals had significantly greater signal intensity than the non-enriched carbons of the 

steroidal backbone. In summary, the 13C labelling provided fully labelled bisglucuronide 

({13C6}-6 and {13C6}-9) and monoglucuronide ({13C6}-4, {13C6}-17-{13C6}-20) conjugates 

suitable for use a stable isotope labelled internal standards and mass spectrometry probes.  

3.3. Synthesis of steroid sulfate glucuronide reference materials 

A second family of steroid bisconjugates produced in this study was the steroid sulfate 

glucuronides. Ten steroid sulfate glucuronides were synthesised on a preparative scale, 

generally by a three-step sequence involving sulfation, ketone reduction, and 

glucuronylation as shown below for the conversion of EA 22 to 5α-androstane-3β,17β-diol 

3-sulfate 17-glucuronide 23 (Scheme 5). This order of synthesis was chosen as initial 

glucuronylation would introduce three additional hydroxyl groups on the sugar ring, and 

subsequent sulfation could then occur unselectively on any of the available hydroxyl groups.  

 

Scheme 5. Three-step synthesis of 5α-androstane-3β,17β-diol 3-sulfate 17-glucuronide 23 

from EA 22. 
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The sulfation reaction was performed using sulfur trioxide-pyridine complex according to a 

literature method [36]. Ketone reduction was performed using sodium borohydride [36], or 

with additional cerium (III) chloride heptahydrate (Luche conditions) for α,β-unsaturated 

ketones like testosterone and epitestosterone sulfate [38]. Reduction of the C17 ketones 

afforded the 17β-hydroxy steroid as the sole diastereomer. However, reduction of the C3 or 

C20 ketones gave diastereomeric mixtures. The C3 ketone reduction afforded 1:7-13 

mixtures of 3α:3β diastereomers [10]. The C20 ketone reduction proceeded under Felkin-

Anh control to favour the 20R diastereomer (1:6 S:R) as observed in the literature for the 

reduction of pregnenolone [39],[40]. Reduction of the toluenesulfonylhydrazone derivative 

of pregnenolone sulfate under conditions similar to those reported by Tada et al. [41], 

afforded a 1:1 ratio of the 20S:20R diastereomers.  

In the final step, steroid diol monosulfates were glucuronylated using the E. coli 

glucuronylsynthase and the α-D-glucuronyl fluoride 2 donor [32] to give steroid diol sulfate 

glucuronides 23-32. Glucuronylation was observed for 3β(5α), 3β(5-ene), 3(phenolic), 17β, 

20S and 20R hydroxyl groups. The starting diol monosulfates for the synthesis of sulfate 

glucuronides 26, 27, 29 and 30 contained mixtures of 3α and 3β alcohols, and the 3α alcohol 

did not react [32], observed by 1H NMR analysis of the product mixture. The starting diol 

monosulfates for the synthesis of sulfate glucuronides 31 and 32 contained mixtures of 20S 

and 20R alcohols, and both diastereomers were observed to react. For glucuronylation at 

the C3 position to form 17-sulfate 3-glucuronides, higher conversions (83-86%) were 

observed for steroid 3β,17β-diols 26 and 29 or estradiol 28, than the steroid 3β,17α-diols 27 

and 30 (42-62%). Glucuronylation at the C17 position to form steroid 3-sulfate 17-

glucuronides 23 and 25, typically proceeded in high conversion (93-97%). Surprisingly, 

glucuronylation to afford androst-5-ene-3β,17β-diol 3-sulfate 17-glucuronide 24 consistently 

gave low conversion (15%). Purification was achieved by SPE (WAX and C18) in a manner 

similar to that described for the bisglucuronides above (Section 3.1) to afford the products 

with > 95% purity and these were characterised by 1H NMR, 13C NMR, LRMS, and HRMS. 

In total, ten pure steroid sulfate glucuronides 23-32 were obtained, including diastereomeric 

mixtures 31 and 32 favouring the 20R- and 20S- diastereomers respectively, which were not 

separable using the C18 method.  

One 13C labelled steroid sulfate glucuronide was synthesised, 5α-androstane-3β,17β-diol 3-

sulfate 17{13C6}-glucuronide {13C6}-23 using the same three-step synthesis, but using {13C6}-

α-D-glucuronyl fluoride {13C6}-2 in the final glucuronylation step (Figure 4). Full incorporation 

of six 13C isotopes from the glucuronide moiety was observed based on LRMS (-ESI). The 
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presence of the {13C6}-glucuronide moiety gave distinctive splitting in 1H and 13C NMR 

spectra in a manner similar to that observed for selectively labelled bisglucuronides {13C6}-

6 and {13C6}-9 (Figure 3). 

3.4. NMR analysis of steroid bisglucuronide and sulfate glucuronide reference materials 

All reference materials prepared by this study were characterised by 1H and 13C NMR 

spectroscopy. In addition to providing important evidence of compound identity and purity, 

the application of NMR chemical shift and multiplicity data within emerging NMR 

metabolomics workflows may aid in the rapid assignment of metabolite structure [42]. 

Several diagnostic proton signals were observed in the 1H NMR spectra of the synthetically 

derived steroid bisglucuronides 5, 6, 9-16 and sulfate glucuronides 23-32. On 

glucuronylation, adjacent C3-H and C17-H protons shifted downfield by 0.20-0.35 ppm. For 

example, the C17-H signal in diol monosulfate 21 (δ 3.56, t, J 8.6 Hz) shifted downfield by 

0.23 ppm (δ 3.79, t, J 8.6 Hz) on glucuronylation to afford sulfate glucuronide 23 (Scheme 

5). In contrast, the C20-H protons displayed different behaviour. The 20S diastereomer 

(more clearly seen with bisglucuronide 14), showed a downfield shift of 0.08 ppm for the 

C20-H signal. On the other hand, the C20-H signal for the 20R diastereomer shifted 0.35 

ppm in bisglucuronide 16. For the aromatic protons in estradiol bisglucuronide 9, the C1-H 

proton moved 0.11 ppm (meta-position to the reacting site), and the C2-H and C4-H protons 

moved 0.34 ppm (ortho-position to the reacting site). Other than these steroidal proton shifts, 

new peaks in 1H NMR that were typical of bisglucuronide and sulfate glucuronide 

compounds included the anomeric protons from each glucuronide unit. For bisglucuronide 

compounds (5, 6, 9-16), these were typically resolved, with each appearing as a doublet. 

For bisglucuronide 6, the 3-glucuronide anomeric proton signal (δ 4.41, d, J 7.7 Hz) was well 

resolved from that of the 17-glucuronide (δ 4.35, d, J 7.8 Hz). These assignments were 

readily made by comparisons to previously reported 1H NMR data for EA glucuronide 17 

and dihydrotestosterone glucuronide [32]. Estradiol bisglucuronide 9 displayed one 

anomeric proton signal for the 17-glucuronide (δ 4.40, d, J 7.8 Hz) with the second anomeric 

proton from the 3-glucuronide obscured by the water peak from the deuterated methanol 

solvent (δ 4.85). Eight additional protons from the two glucuronide units in bisglucuronides 

and four additional protons in sulfate glucuronides appeared between δ 3.1-3.7.  

Similarly, diagnostic protons for steroid sulfate glucuronides (23, 24, 26-32) were the 

oxymethine protons that were shifted downfield after sulfation reaction. After sulfation 

reaction, C3-H or C17-H shifted downfield by 0.65-0.76 ppm as expected from the previously 
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reported data [36]. For estradiol 3-sulfate 17-glucuronide 25, the aromatic protons were also 

shifted, C1-H proton moved 0.18 ppm (meta-position to the reacting site), and the C2-H and 

C4-H protons moved 0.54 ppm (ortho-position to the reacting site). After glucuronylation 

reaction, the oxymethine protons shifts were smaller than after sulfation reaction as 

mentioned above and as previously reported for monoglucuronides [32]. In summary, the 

protons associated with sulfation and glucuronylation reaction sites were typically resolved 

(δ 3.0 to 5.0) from the rest of steroidal backbone protons, and so the chemical shift and 

multiplicity of these signals is likely some diagnostic value. Characteristic 1H NMR signals 

all steroid bisglucuronide and steroid sulfate glucuronide reference materials are tabulated 

in the supplementary material (Table S1). 

3.5. MS analysis of unlabelled and labelled steroid bisglucuronides 

3.5.1. Ionisation 

In the full MS with 70 V cone voltage, the mono-anion [M-H]- was the major ion observed 

with some minor [M-H-gluc]- in-source fragmentation also found (where “gluc” was the 

dehydrated glucuronic acid moiety (C6H8O6) 176 Da). The highest relative abundance for 

the [M-H-gluc]- ion appeared for estradiol bisglucuronide 9 and 5β-cholane-3α,24-diol 

bisglucuronide 13 with 30% and 25% respectively, while only between 5-10% was observed 

for the other compounds (5, 6, 10-12, 14-16). In addition, estradiol bisglucuronide 9 also 

showed another in-source fragment [M-H-2gluc]- m/z 271 in the scan MS. In contrast, scan 

MS with 26 V cone voltage formed the di-anion [M-2H]2- as the major ion, while still forming 

mono-anion [M-H]- with 50-100% relative abundance. In-source fragmentation was only 

observed for estradiol bisglucuronide 9, giving 5% [M-H-gluc]-. A recent MS study on a library 

of crude chromatographically resolved steroid bisglucuronides reported similar findings [33]. 

The current study highlights potential to favour the formation of either mono- or di-anion 

precursors of the bisglucuronides for subsequent MS/MS studies. 

3.5.2. Fragmentation 

Collision Induced Dissociation (CID) was then applied to mono- and di-anionic precursor 

ions to study their MS fragmentation. With the mono-anion [M-H]-, the major fragments at 

50 eV collision energy that retained the steroid backbone were [M-H-gluc]- and [M-H-

C2H4O3]-, corresponding to neutral loss (NL) of 176 Da and 76 Da respectively. The NL of 

76 Da was not observed for estradiol bisglucuronide 9 and 5β-cholane-3α,24-diol 

bisglucuronide 13. Instead, estradiol bisglucuronide 9 showed [M-H-2gluc]- (m/z 271) or a 
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combined NL of 352 Da. Another minor fragment containing the steroid backbone involved 

the combined NL of the glucuronide unit and water ([M-H-gluc-H2O]-), and this was more 

prominent for the unsaturated steroid bisglucuronides 11 and 12. Fragments from the 

glucuronide moiety itself (m/z 175, 157, 129, 113, 85, 75) were also observed as earlier 

reported by for monoglucuronides [12] and bisglucuronides [33]. 

For the di-anionic precursor ions [M-2H]2-, fragmentation with 20 eV collision energy, the 

common fragments formed were derived from ion loss of m/z 175 ([gluc-H]-) and 75 

([C2H3O3]-), to give [M-2H-(gluc-H)]- (equivalent to [M-H-gluc]- above) and [M-2H-(C2H3O3)]- 

(equivalent to [M-H-C2H4O3]- above) respectively. These fragments were noteworthy 

because of the increase in m/z caused by an ion loss from the precursor ion during 

fragmentation. A similar pattern of ion loss from di-anionic precursor ions was previously 

identified in steroid bis(sulfates) leading to the development of the constant ion loss (CIL) 

scan method [21]. Estradiol bisglucuronide 9 showed a fragment ion at m/z 271 ([M-2H-

(gluc-H)-gluc]-) resulting from the combined ion loss of m/z 175 and NL of 176 Da. 

Interestingly, 5β-cholane-3α,24-diol bisglucuronide 13 gave an ion loss of m/z 75 giving a 

fragment ion at m/z 637 that was not formed by NL 76 from the corresponding mono-anion. 

The NL of water after ion loss of m/z 175 ([M-2H-(gluc-H)-H2O]-) and fragments of the 

glucuronide moiety (m/z 175, 157, 129, 113, 85, 75) were also typically observed as 

described earlier for the mono-anion fragmentation. 

Collision-induced dissociation was also performed on the stably-labelled steroid 

monoglucuronides and selectively mono-labelled steroid bisglucuronides. For the 

monoglucuronides, three labelled EA glucuronide reference materials were available, 

unlabelled 17, 18O labelled {18O}-17, and 13C labelled {13C6}-17 (Figure 3), and for each CID 

was performed targeting the [M-H]- precursor ion at 50 eV collision energy (Table 1). For the 

18O labelled EA glucuronide {18O}-17 the fragmentation study targeted the doubly labelled 

precursor ion (increase of m/z 4). The major fragments in the unlabelled EA glucuronide 17 

were the glucuronide moiety fragments at m/z 113, 85, and 75. The 18O labelled EA 

glucuronide {18O}-17 confirmed that fragments at m/z 113 ([gluc-H-H2O-CO2]-) and 85 ([gluc-

H-H2O-CO2-CO]-) formed with loss of the C6 carboxylate since no 18O labelling of the 

fragments was observed. However, the fragment at m/z 75 ([C2H3O3]-) was observed at m/z 

79 due to the inclusion of two 18O isotopes (increase of m/z 4) indicating that this fragment 

contained the C6 carboxylate unit. Furthermore, for fragmentation of the 13C labelled {13C6}-

17 precursor ion this glucuronide [C2H3O3]- fragment became m/z 77 due to the inclusion of 

two 13C isotopes (increase of m/z 2) consistent with the inclusion of two glucuronide carbons, 
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likely C5 and C6. The 13C labelled EA glucuronide {13C6}-17 also showed increased in m/z 

to 118 and 89 for the other glucuronide fragments due to the inclusion of five and four 13C 

atoms respectively (Table 1).  

Table 1. Fragmentation of selected monoglucuronide precursor ions [M-H]- (70 V cone 

voltage, 50 eV collision energy): a indicates 18O labelled precursor or fragment; b indicates 

13C labelled precursor or fragment. 

 Precursor ion,  

m/z (relative 

abundance) 

Fragment ions,  

m/z (relative abundance) 

Compound [M-H]- [gluc-H]- [gluc-H-

H2O]- 

[gluc-H-

H2O-

CO2]- 

[gluc-H-

H2O-CO2-

CO]- 

[HOCH2COO]- 

EA                   

glucuronide 17 

465 (100) 175 (1) 157 (3) 113 

(30) 

85 (50)  75 (50) 

EA                      

{18O2}-glucuronide 

{18O}-17 

469 (100)a 179 (1)a 161 (2)a 113 

(25) 

85 (50) 79 (50)a 

EA                       

{13C6}-glucuronide 

{13C6}-17 

471 (100)b 181 (1)b 163 (2)b 118 

(30)b 

89 (60)b 77 (60)b 

The fragmentation behaviour of two selectively mono-labelled steroid bisglucuronide 

compounds, 5α-androstane-3β,17β-diol 3{13C6},17-bisglucuronide {13C6}-6 and estradiol 

3,17{13C6}-bisglucuronide {13C6}-9 were also studied by CID. When the mono anion ([M-H]-) 

of 5α-androstane-3β,17β-diol 3{13C6},17-bisglucuronide {13C6}-6 was fragmented, two ions 

m/z 467 ([M-H-({13C6}-gluc)]-) and 473 ([M-H-gluc]-) were observed with similar intensity 

(Table 2). This suggested that similar energies were required for fragmentation of each end 
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of the bisglucuronide. On the other hand, estradiol 3,17{13C6}-bisglucuronide {13C6}-9 only 

showed one fragment at m/z 453 ([M-H-gluc]-) where the unlabelled glucuronide at the 3-

position had been lost, indicating that cleavage of the phenolic glucuronide was preferred 

due to the conjugated nature of the linking glycosidic oxygen atom. Both labelled and 

unlabelled glucuronide fragments (m/z 175, 157, 113, 85, 75) appeared for both selectively 

labelled bisglucuronides. Fragmentation of the di-anions ([M-2H]2-) showed similar 

behaviour (Figure 6, Table 3). In conclusion, selectively mono-labelled bisglucuronide 

reference materials provide a means to study the fragmentation associated with both 

glucuronide units of a bisglucuronide compound.  

 

Figure 6. Fragmentation of di-anion precursor ions [M-2H]2- (26 V cone voltage, 30 eV 

collision energy): (a) 5α-androstane-3β,17β-diol 3{13C6},17-bisglucuronide {13C6}-6, (b) 

estradiol 3,17{13C6}-bisglucuronide {13C6}-9, with the 13C labelled glucuronide unit 

highlighted in red 
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Table 2. Fragmentation of selected bisglucuronide mono-anion precursor ions [M-H]- (70 V cone voltage, 50 eV collision energy): a indicates 

13C labelled precursor or fragment. 

Compound [M-H]- [M-H-

C2H4O3]- 

[M-H-gluc]- [M-H-

2gluc]- 

[gluc-H]- [gluc-H-

H2O]- 

[gluc-H-

H2O-CO2]- 

[gluc-H-H2O-

CO2-CO]- 

[C2H3O3]- 

EA 3,17-

bisglucuronide 6 

643 (20) 567 (5) 467 (10) - - 157 (5) 113 (50) 85 (100) 75 (60) 

EA 3{13C6},17-

bisglucuronide 

{13C6}-6 

649 (20)a 573 (3)a 467 (6) 

473 (10)a 

- - 157 (5) 

163 (5)a 

113 (50) 

118 (40)a 

85 (100) 

89 (80)a 

75 (60) 

77 (60)a 

Estradiol 3,17-

bisglucuronide 9 

623 (5) - 447 (35) 271 

(40) 

175 (10) 157 (5) 113 (85) 85 (100) 75 (50) 

Estradiol 3,17{13C6}-

bis(glucuronide 

{13C6}-9 

629 (5)a - 453 (50)a 271 

(50) 

175 (10) 157 (5) 

163 (3)a 

113 (100) 

118 (30)a 

85 (75) 

89 (75)a 

75 (30) 

77 (35)a 
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Table 3. Fragmentation of selected bisglucuronide di-anion precursor ions [M-2H]2- (26 V cone voltage, 30 eV collision energy): a indicates 

13C labelled precursor or fragment. 

Compound [M-2H]2- [M-2H-(gluc-H)]- [M-2H-(gluc-H)-

gluc]- 

[gluc-H-H2O-

CO2]- 

[gluc-H-H2O-

CO2-CO]- 

[C2H3O3]- 

EA 3,17-bisglucuronide 6 321 (5) 467 (5) - 113 (25) 85 (90) 75 (100) 

EA 3{13C6},17-bisglucuronide     

{13C6}-6 

324 (10)a 467 (5) 

473 (5)a 

- 113 (30) 

118 (25)a 

85 (100) 

89 (85)a 

75 (100) 

77 (100)a 

Estradiol 3,17-bisglucuronide 9 311 (5) 447 (5) 271 (40) 113 (40) 85 (100) 75 (95) 

Estradiol 3,17{13C6}-bis(glucuronide 

{13C6}-9 

314 (3)a 453 (5)a 271 (50) 113 (25) 

118 (25)a 

85 (45) 

89 (100)a 

75 (40) 

77 (90)a 
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3.6. MS analysis of steroid sulfate glucuronide reference materials 

3.6.1. Ionisation 

During the scan MS analysis, 70 V and 26 V cone voltages were used to maximise the 

response of the mono-anion ([M-H]-) and di-anion ([M-2H]2-) respectively. When using 70 V 

cone voltage, mono-anion ([M-H]-) but no di-anion was formed. An in-source fragment was 

typically observed corresponding to loss of the dehydrated glucuronic acid ([M-H-gluc]-, 25-

100%). Other in-source fragments such as [M-H-C4H6O5]- were observed for the androstane 

type sulfate glucuronides 23, 26, 27, and both [M-H-C7H12O7]- and [M-H-gluc-H2O]- were 

observed for sulfate glucuronides 23, 26, 29, 30. The estradiol 3-sulfate 17-glucuronide 25 

formed an in-source fragment m/z 271, corresponding to ([M-H-gluc-SO3]-). 

When the 26 V cone voltage was used, the formation of the di-anion ([M-2H]2-) was favoured, 

with the mono-anion ([M-H]-) still observed at lower relative abundance (15-55%). Similar to 

above, the in-source fragment [M-2H-(gluc-H)]- (corresponding to [M-H-gluc]- above) was 

also observed but of lower intensity (5-50%). In-source fragmentation of estradiol 3-

glucuronide 17-sulfate 28 also afforded the ion derived from dehydrated glucuronic acid m/z 

175 ([gluc-H]-). 

3.6.2. Fragmentation 

Collision Induced Dissociation (CID) experiments were performed for all steroid sulfate 

glucuronides from the mono- and di-anion precursor ions. For the mono-anion ([M-H]-), the 

most intense fragment at 50 eV collision energy retaining the steroid backbone was [M-H-

gluc]-, except for the unsaturated steroid sulfate glucuronides 29 and 30 where [M-H-gluc-

H2O]- fragment was more intense. In addition, minor [M-H-gluc-H2O]- fragment was also 

observed for steroid sulfate glucuronides 26, 27, and 31. Another common fragmentation 

was loss of m/z 97 corresponding to hydrogen sulfate ion ([HSO4]-). The loss of [HSO4]- was 

a typically intense fragment throughout the library except for estradiol 3-sulfate 17-

glucuronide 25, where neutral loss of 80 Da corresponding to sulfur trioxide (SO3) was 

observed instead. The neutral loss of SO3 rather than loss of the ion [HSO4]- arose as the A 

ring was aromatic and fragmentation of neutral SO3 generates a stabilised phenolate anion. 

Due to this, fragments such as m/z 447 and m/z 271 corresponding to [M-H-SO3]- and [M-

H-gluc-SO3]-, respectively, were only seen for estradiol 3-sulfate 17-glucuronide 25. The m/z 

80 fragment corresponding to sulfur trioxide radical anion ([•SO3]-) was also formed from this 

compound. 
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Fragmentation of the di-anion precursor [M-2H]2- at 20 eV collision energy gave a greater 

number of fragments than the mono-anion [M-H]-. Similar to the mono-anion, loss of the 

glucuronide derived anion ([M-2H-(gluc-H)]-, corresponding to [M-H-gluc]- above) or 

hydrogen sulfate ([HSO4]-, except estradiol 3-sulfate 17-glucuronide 25) were typically the 

two most intense fragments throughout the library. In addition, [M-2H-(gluc-H)-H2O]- 

(corresponding to [M-H-gluc-H2O]- above) was more commonly observed in the di-anion 

fragmentation compared to the mono-anion. Another common fragment formed in the di-

anion fragmentation was derived from ion loss of m/z 75 ([C2H3O3]-), to give [M-2H-

(C2H3O3)]- (corresponding to [M-H-C2H4O3]- above) similar to the steroid bisglucuronide di-

anion fragmentation (Section 3.5.2). Once again, the ion loss fragmentation from [M-2H]2- 

to [M-2H-(C2H3O3)]-, [M-2H-(gluc-H)]-, and [M-2H-(gluc-H)-H2O]- lead to an increase in m/z 

ratio. Other fragments were also observed including [M-2H-(C3H2O5)]- (typically for A ring 

glucuronides 26 and 27) and [M-2H-(C3H4O5)]- (typically for D ring glucuronides 23, 24, 25). 

As described in the mono-anion, the di-anion derived from estradiol 3-sulfate 17-glucuronide 

25 underwent neutral loss of 80 Da (SO3), giving rise to fragments m/z 271 and m/z 239 that 

corresponded to [M-2H-(gluc-H)-SO3]- and [M-2H-(C7H11O7)-SO3]-. On the other hand, the 

aromatic glucuronide estradiol 3-glucuronide 17-sulfate 28 fragmented to give [gluc-H]- (m/z 

175), while only glucuronide fragments (m/z 113, 85, 75) were usually observed in the other 

library members.  
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Figure 7. Fragmentation of di-anion precursor ions [M-2H]2- (26 V cone voltage, 20 eV 

collision energy): (a) 5α-androstane-3β,17β-diol 3-sulfate 17-glucuronide 23, (b) estradiol 3-

sulfate 17-glucuronide 25, (c) estradiol 3-glucuronide 17-sulfate 28. 

3.6.3. LC-MS analysis of a male urine sample 

The library of ten steroid sulfate glucuronide reference materials was developed according 

a range of design criteria including structural diversity and synthetic accessibility, but without 

specifically targeting putative metabolites. Despite this, the potential existed for library 

members to occur as endogenous metabolites. To explore this, a selected reaction 

monitoring (SRM) method for the detection of sulfate glucuronide library members as 

endogenous metabolites was developed. To increase analytical sensitivity, the di-anion ([M-

2H]2-) was selected as precursor as MS conditions necessary to favour the mono-anion ([M-

H]-) typically resulted in lower ion counts. Further, the SRM method was developed for each 

library member using as small number of diagnostic transitions only. The diagnostic 

transitions were not necessarily the most intense transitions observed for the library but 
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retained the steroid backbone in the fragment and so contained information on ion structure 

(summarised in Table 4 for pregn-5-ene-3β,20R/S-diol 3-sulfate 20-glucuronide 31 and 32). 

Using this SRM method on a single male urine sample resulted in matches to urinary 

metabolites for both pregn-5-ene-3β,20R-diol 3-sulfate 20-glucuronide 31 and pregn-5-ene-

3,20S-diol 3-sulfate 20-glucuronide 32 reference materials (Figure 8). Matches were 

confirmed using the World Anti-Doping Agency (WADA) MS criteria for retention time and 

the relative abundance of three diagnostic transitions (see SI section) [43]. This confirmed 

the existence of pregn-5-ene-3β,20R/S-diol 3-sulfate 20-glucuronide 31 and 32 as 

endogenous steroid sulfate glucuronide metabolites that have not previously been reported, 

as endogenous steroid metabolites. Although brief, this study provides the motivation for 

more detailed studies on steroid sulfate glucuronides as endogenous urinary metabolites. 

Access to a range of steroid sulfate reference materials provides avenues to develop 

sensitive and selective LC-MS methods for the direct and untargeted detection of this 

metabolite family.  

Table 4. Diagnostic transitions (1-3) for pregn-5-ene-3,20S-diol 3-sulfate 20-glucuronide 

32 (20S:20R = 2:1). 

Precuror 

ion (m/z) 

Product ion 

(m/z) 

Cone Voltage 

(V) 

Collision Energy 

(eV) Proposed product ion 

286.1 397.2 26 20 [M-2H-(gluc-H)]- 

286.1 379.2 26 20 [M-2H-(gluc-H)-H2O]- 

286.1 277.1 26 10 [M-2H-H2O]2- 

 

 

Figure 8. Chromatogram of SRM transitions for (a) pregn-5-ene-3β,20S-diol 3-sulfate 20-

glucuronide 32 (20S:20R = 2:1) and (b) male urine sample. 



49 

Discussion 

Steroidal bisconjugates (Figure 1) have long been known as minor components of the 

steroid profile. In the past, these were typically analysed using laborious chromatographic 

fractionation and hydrolysis [17],[18], followed by GC-MS detection [19],[20]. Recent 

developments in both chemical synthesis and LC-MS technology have created avenues for 

the direct detection of these minor metabolites. These advances are exemplified by the CIL 

scan method for the direct and untargeted detection of urinary steroid bis(sulfate) 

metabolites [21]. The CIL scan method has been employed to study the endogenous steroid 

bis(sulfate) profile, including during pregnancy, to identify markers associated with sports 

doping [21], and for the analysis of maternal urine to provide discriminating prenatal 

diagnosis of inborn errors of steroid biosynthesis associated with SLOS, STSD, and PORD 

[22]. Integral to the development of the CIL scan method was the interplay between chemical 

synthesis and MS method development. Synthetic access to a wide range of steroidal 

bis(sulfate) reference materials revealed ion loss fragmentation as a common feature of this 

compound class and enabled the development of a UPLC-MS CIL scan method with high 

selectivity and good levels of detection for the targeted analytes [21]. 

In this work, the synthesis of other neglected steroidal bisconjugate families, steroid 

bisglucuronides and steroid sulfate glucuronides, was achieved using the E. coli 

glucuronylsynthase enzyme [32],[37],[44]. The glucuronylsynthase is an engineered 

glycosynthase variant [45],[46] of the E. coli β-glucuronidase enzyme that is widely 

employed in chemical analysis for steroid glucuronide hydrolysis in sample preparation [7]. 

The glucuronylsynthase incorporates an active mutation that disables glucuronide 

hydrolysis, but using the enzyme in concert with the synthetically derived α-D-glucuronyl 

fluoride 2 substrate promotes the single-step chemical synthesis of glucuronides under mild 

conditions. The synthesis of 14 steroid monoglucuronides using the glucuronylsynthase was 

the subject of earlier research [32]. This study extends the glucuronylsynthase approach to 

the synthesis of ten steroid bisglucuronide, and ten steroid sulfate glucuronide, reference 

materials on a scale suitable for purification and characterisation by MS and NMR to confirm 

compound identity.  

As an enzymatic method of glucuronylation, the E. coli glucuronylsynthase is mechanistically 

distinct from the UGT-promoted biosynthesis of steroid glucuronides [47],[48] but shares 

several key attributes, including mild and single-step conjugation. One notable feature of the 

glucuronylsynthase approach is the ability to adjust reaction scale using standard laboratory 
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methods [37]. The glucuronylsynthase method is also distinct from chemical methods of 

glucuronylation that employ protected and activated glucuronide donors and require multiple 

protection and deprotection steps and more forcing reaction conditions [49],[50]. Of the 

reference materials targeted by this work, estradiol 3-sulfate 17 glucuronide 25 (Figure 4) 

has previously been prepared by a five step chemical synthesis from estradiol [26]. Using 

the glucuronylsynthase approach, sulfation, reduction and glucuronylation of estrone 

afforded the estradiol 3-sulfate 17 glucuronide 25 in three steps. Further, selective sulfation 

of estradiol followed by glucuronylation afforded the regioisomeric estradiol 17-sulfate 3-

glucuronide 28 in just two steps. The synthesis described herein significantly expands the 

range of steroid bisconjugate reference materials accessible, providing for the first time 

access to steroid sulfate glucuronides where the sulfate is conjugated to saturated rather 

than phenolic hydroxyl groups. The study delineates the scope and some of the limitations 

of the glucuronylsynthase promoted synthesis but clearly establishes the method as a 

valuable complement to biochemical or chemical synthesis approaches for the preparation 

of steroid bisconjugate reference materials.  

The E. coli glucuronylsynthase also provides a general approach to prepare stable isotope 

labelled steroid bisconjugates through the late stage introduction of a labelled glucuronic 

acid unit (Figure 3). The fully labelled {13C6}-α-D-glucuronyl fluoride {13C6}-2 was prepared 

in four steps by established routes [37] from the relatively inexpensive and commercially 

available {13C6}-D-glucose. Using a sequential glucuronylation pathway provided for the 

selective labelling of steroid bisglucuronides 6 and 9 suitable for use as internal standards 

or mass spectrometry probes. In this work, the MS study of the mono- and di-anions showed 

no significant preference for fragmentation of the glucuronide units appended to the 

saturated A- and D-rings in 5α-androstane-3β,17β-diol 3{13C6},17-bisglucuronide, 

ammonium salt {13C6}-6 (Figure 6). In contrast, fragmentation of estradiol 3,17{13C6}-

bisglucuronide {13C6}-9 revealed fragmentation preferentially occurred at the phenolic A-

ring. Similar methods provided access to five stable isotope labelled steroid mono-

glucuronides {13C6}-4, {13C6}-17-{13C6}-20 and one steroid sulfate glucuronide {13C6}-23. 

By design, this study has not targeted the preparation of particular steroid bisconjugate 

reference materials, instead exploring the scope and limitations of the glucuronylsynthase 

method and providing a diverse range of derivatives for MS method development. Despite 

this, preliminary investigations have employed the reference materials to study MS 

ionisation and fragmentation patterns, so confirming the presence of the steroid 

bisconjugates pregn-5-ene-3β,20R-diol 3-sulfate 20-glucuronide 31 and pregn-5-ene-
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3β,20S-diol 3-sulfate 20-glucuronide 32 as endogenous human urinary metabolites by LC-

MS analysis. In this respect, the current work is only at an early stage. Future studies using 

the steroidal bisconjugates prepared in this work will target the development of selective 

MS-based methods for the direct and untargeted detection of these metabolite families using 

modern MS instrumentation. Such studies promise to reveal in rich detail the role of steroidal 

bisconjugates in the steroid profile, unearthing these neglected treasures of steroidal 

metabolism. 

Conclusions 

A library of ten steroid bisglucuronides and ten steroid sulfate glucuronides was synthesised, 

purified and characterised by MS and NMR methods. The synthesis of stable isotope 

labelled internal standards by late-stage introduction of labelled glucuronide units is also 

reported, and applied to study the MS fragmentation of selectively labelled steroid 

bisglucuronides. Access to steroidal bisconjugate reference materials promised to expand 

the MS methods available to detect these minor steroid metabolites in fields such as sports 

drug testing or medical research.  
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Chapter 1: Steroid bisglucuronides stepwise examples 

The first example was the formation of bisglucuronide 6. Epiandrosterone (EA) glucuronide 

17 and dihydrotestosterone (DHT) glucuronide 39 were synthesised from EA 22 and DHT, 

respectively, using the same glucuronylation method (see Section 2.4.5) [1]. These two 

compounds were then reacted with sodium borohydride [2] to form 5α-androstane-3β,17β-

diol 3-glucuronide 8 and 5α-androstane-3β,17β-diol 17-glucuronide 40, the two possible 

intermediates. When the ketone at 3-position was reduced, a 1:9 mixture of 3α and 3β 

alcohols was formed, with 3β alcohol preferred [3]. On the other hand, 17-ketone reduction 

only gave 17β alcohol. The second glucuronylation reaction was then performed on these 

steroid diol monoglucuronides 8 and 40. Attempted reaction of the steroid diol 3-glucuronide 

8 resulted in no conversion to the bisglucuronide 6 with the starting material 8 recovered 

unchanged. In contrast, the steroid diol 17-glucuronide 40 derived from DHT reacted to form 

the bisglucuronide 6 with 90% conversion overall (> 98% conversion from the 3β,17β-diol 

17-glucuronide to the bisglucuronide, with the 3α,17β-diol 17-glucuronide unreacted). The 

unreacted 3α,17β-diol 17-glucuronide could then be removed using C18 cartridge to obtain 

the pure bisglucuronide 6. In conclusion, this showed that the diol 17-glucuronide 40 reacted 

faster than the diol 3-glucuronide 8 to form the bisglucuronide 6, thus no diol 17-glucuronide 

40 was observed at the end of the one-step glucuronylation reaction. 
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Scheme S1. Stepwise synthesis of 5α-androstane-3β,17β-diol bisglucuronide 6 

The second example was the formation of estradiol bisglucuronide 9. The possible 

intermediates in this case were estradiol 3-glucuronide 41 and estradiol 17-glucuronide 42. 

Estradiol 3-glucuronide 41 was synthesised by reducing estrone 3-glucuronide 43 using 

sodium borohydride. On the other hand, estradiol 17-glucuronide 42 was synthesised by a 

longer synthetic route. This started from estradiol 3-sulfate 44 that was synthesised in two 

steps from estrone [2]. This was then glucuronylated to produce estradiol 3-sulfate 17-

glucuronide 25, and the sulfate group selectively cleaved by the Pseudomonas aeruginosa 

arylsulfatase (PaS) enzyme to afford estradiol 17-glucuronide 42 [4]. Now that two 

intermediates 41 and 42 had been obtained, the second glucuronylation reaction was 

performed. In contrast with previous example, bisglucuronide 9 could only be formed from 

estradiol 3-glucuronide 41 with > 98% conversion, eliminating the need of C18 purification. 

Performing the second glucuronylation on estradiol 17-glucuronide 42 gave no conversion. 
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Scheme S2. Stepwise synthesis of estradiol bisglucuronide 9 

The third example of stepwise glucuronylation was the bisglucuronide 11. The androst-4-

ene-3β,17β-diol 17-glucuronide 45 derivative was obtained from testosterone 46 which was 

glucuronylated, followed by reduction at the 3-ketone under Luche conditions to afford 

androst-4-ene-3β,17β-diol 17-glucuronide 45 [5]. This afforded a 1:11 mixture of 3α and 3β 

alcohols. The longer route for the other intermediate started from a Luche reduction of 

testosterone propionate 47, which again gave diastereomeric mixture (1:8 ratio of 3α and 

3β alcohols). Glucuronylation at the 3-position gave androst-4-ene-3β,17β-diol 3-

glucuronide 17-propionate 48 as a single diastereomer as the 3α hydroxyl group did not 

react and was subsequently separated by WAX SPE. The propionate ester protecting group 

was then hydrolysed using sodium hydroxide to afford the steroid diol 3-glucuronide 49. In 

the final glucuronylation, both steroid diol 3-glucuronide 49 and 17-glucuronide 45 

derivatives reacted further to form the bisglucuronide 11, with 42% and 60% conversion 

respectively. Again, the 3α,17β-diol 17-glucuronide did not react. In both cases, purification 

of the bisglucuronide 11 was afforded by C18 SPE. 

 

Scheme S3. Stepwise synthesis of androst-4-ene-3β,17β-diol bisglucuronide 11 
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Chapter 2: NMR analysis of steroid bisglucuronides and sulfate glucuronides 

Table S1. 1H NMR diagnostic peaks of steroid bisglucuronides and sulfate glucuronides 

Compound C3-H or aromatic C17-, C20-, or C24-H Glucuronide anomeric 

5α-Androstane-3β,17α-diol 

bisglucuronide 5 

3.77 (m, C3-H)a 3.93 (d, J 5.5 Hz, C17-H)a 4.41 (d, J 7.8 Hz, C20-H)a, 

4.24 (d, J 7.8 Hz, C26-H)a 

5α-Androstane-3β,17β-diol 

bisglucuronide 6 

3.80-3.72 (m, C3-H and  

C17-H)a 

3.80-3.72 (m, C3-H and  

C17-H)a 

4.41 (d, J 7.7 Hz, C20-H)a, 

4.35 (d, J 7.8 Hz, C26-H)a 

Estradiol bisglucuronide 9 7.18 (d, J 8.6 Hz, C1-H), 

6.87 (dd, J 8.6, 2.6 Hz, C2-H), 

6.81 (d, J 2.5 Hz, C4-H)a 

3.89 (t, J 8.6 Hz, C17-H)a 4.40 (d, J 7.8 Hz, C25-H)a, 

C19-H obscuredb 

Androst-5-ene-3β,17β-diol 

bisglucuronide 10 

3.65 (m, C3-H) 3.81 (t, J 8.5 Hz, C17-H)c 4.40 (d, J 7.8 Hz, C20-H), 

4.36 (d, J 7.8 Hz, C26-H)c 

Androst-4-ene-3β,17β-diol 

bisglucuronide 11 

4.26 (m, C3-H)a,d 3.77 (t, J 8.6 Hz, C17-H)a 4.43 (d, J 7.8 Hz, C20-H)a,d, 

4.35 (d, J 7.8 Hz, C26-H)a 

19-Norandrost-4-ene-3β,17β-diol 

bisglucuronide 12 

4.28 (m, C3-H)e 3.80 (t, J 8.6 Hz, C17-H)e 4.43 (d, J 7.8 Hz, C19-H)e, 

4.35 (d, J 7.9 Hz, C25-H)e 

5β-Cholane-3α,24-diol 

bisglucuronide 13 

3.82 (m, C3-H)f 3.96 (m, C24-HA), 

3.49-3.36 (m, C24-HB, C27-H, C28-H, 

C33-H, C34-H)g 

4.41 (d, J 7.7 Hz, C25-H)f, 

4.25 (d, J 7.7 Hz, C31-H) 

5α-Pregnane-3β,20S-diol 

bisglucuronide 14 

3.78 (m, C3-H)h 3.64 (m, C20-H) 4.40 (d, J 7.8 Hz, C22-H)h, 

4.35 (d, J 7.8 Hz, C28-H) 

Pregn-5-ene-3β,20S/R-diol 

bisglucuronide 15 or 16 

3.63 (m, C3-H)i 3.98 (m, C20-H)j 4.40 (d, J 7.8 Hz, C22-H)i, 

4.36 (d, J 7.7 Hz, C28-H)j 
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5α-Androstane-3β,17β-diol         

3-sulfate 17-glucuronide 23 

4.24 (tt, J 11.3, 4.7 Hz, C3-H)a 3.79 (t, J 8.6 Hz, C17-H)a 4.35 (d, J 7.8 Hz, C20-H)a 

Androst-5-ene-3β,17β-diol  

3-sulfate 17-glucuronide 24 

4.14 (tt, J 11.0, 4.5 Hz, C3-H)a 3.78 (t, J 8.5 Hz, C17-H)a 4.37 (d, J 7.8 Hz, C20-H)a 

Estradiol 3-sulfate 17-glucuronide 

25 

7.23 (d, J 8.5 Hz, C1-H), 

7.03 (dd, J 8.5, 2.6 Hz, C2-H), 

7.00 (d, J 2.5 Hz, C4-H)a 

3.88 (t, J 8.6 Hz, C17-H)a 4.41 (d, J 7.8 Hz, C19-H)a 

5α-Androstane-3β,17β-diol  

3-glucuronide 17-sulfate 26 

3.77 (tt, J 10.8, 5.1 Hz, C3-H)a 4.21 (t, J 8.0 Hz, C17-H)a 4.41 (d, J 7.7 Hz, C20-H)a 

5α-Androstane-3β,17α-diol  

3-glucuronide 17-sulfate 27 

3.76 (tt, J 9.3, 5.2 Hz, C3-H)a 4.31 (d, J 5.7 Hz, C17-H)a 4.42 (d, J 7.8 Hz, C20-H)a 

Estradiol 3-glucuronide 17-sulfate 

28 

7.19 (d, J 8.6 Hz, C1-H), 

6.87 (dd, J 8.5, 2.7 Hz, C2-H), 

6.81 (d, J 2.6 Hz, C4-H)a 

4.31 (t, J 8.6 Hz, C17-H)a 4.85 (C19-H)k 

Androst-4-ene-3β,17β-diol  

3-glucuronide 17-sulfate 29 

4.27 (m, C3-H)a 4.21 (t, J 8.5 Hz, C17-H)a 4.43 (d, J 7.8 Hz, C20-H)a 

Androst-4-ene-3β,17α-diol  

3-glucuronide 17-sulfate 30 

4.27 (m, C3-H)a 4.32 (d, J 5.7 Hz, C17-H)a 4.44 (d, J 7.8 Hz, C20-H)a 

Pregn-5-ene-3β,20R/S-diol  

3-sulfate 20-glucuronide 31 or 32 

4.13 (tt, J 11.0, 4.8 Hz, C3-H)a 3.99 (m, C20-H)a 4.36 (d, J 7.7 Hz, C22-H)a 

a Assigned by stepwise synthesis, b Assigned by corresponding sulfate glucuronide 28, c Assigned by corresponding sulfate glucuronide 

24, d Assigned by corresponding sulfate glucuronide 29, e Assigned by similar bisglucuronide 11, f Assigned by similar glucuronide 

(etiocholanolone glucuronide) [1], g Assigned by similar glucuronide (butyl glucuronide) [6], h Assigned by similar bisglucuronide 5, i 

Assigned by similar bisglucuronide 10, j Assigned by corresponding sulfate glucuronide 31/32, k Assigned by COSY cross peak analysis. 
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Chapter 3: MS analysis of steroid bisglucuronides and sulfate glucuronides 

Table S2. Fragmentation of bisglucuronides mono-anion precursor ions [M-H]- (70 V cone voltage, 50 eV collision energy) 

Compound [M-H]- [M-H-
C2H4O3]- 

[M-H-
gluc]- 

[M-H-
gluc-H2O]- 

[M-H-
2gluc]- 

[gluc-
H]- 

[gluc-H-
H2O]- 

[gluc-H-
H2O-CO]- 

[gluc-H-
H2O-CO2]- 

[gluc-H-H2O-
CO2-CO]- 

[C2H3O3]- 

5α-Androstane-3β,17α-diol 
bisglucuronide 5 

643 
(70) 

567  
(20) 

467 
(20) 

449       
(2) 

- 175 
(10) 

157  
(10) 

129     
(10) 

113     
(60) 

85            
(80) 

75     
(100) 

5α-Androstane-3β,17β-diol 
bisglucuronide 6 

643 
(85) 

567    
(5) 

467 
(25) 

449       
(1) 

- 175 
(5) 

157  
(15) 

129     
(10) 

113     
(70) 

85          
(100) 

75       
(65) 

Estradiol bisglucuronide 9 623 
(20) 

- 447 
(35) 

429       
(5) 

271 
(30) 

175 
(20) 

157  
(10) 

129     
(15) 

113   
(100) 

85            
(75) 

75       
(40) 

Androst-5-ene-3β,17β-diol 
bisglucuronide 10 

641 
(55) 

565  
(10) 

465 
(20) 

- - 175 
(10) 

157   
(30) 

129      
(20) 

113     
(60) 

85          
(100) 

75       
(45) 

Androst-4-ene-3β,17β-diol 
bisglucuronide 11 

641 
(65) 

565  
(10) 

465 
(30) 

447     
(20) 

- 175  
(10) 

157    
(5) 

129     
(15) 

113     
(65) 

85          
(100) 

75       
(55) 

19-Norandrost-4-ene-3β,17β-
diol bisglucuronide 12 

627 
(45) 

551  
(10) 

451 
(15) 

433     
(15) 

- 175 
(5) 

157  
(20) 

129       
(5) 

113     
(50) 

85          
(100) 

75       
(70) 

5β-Cholane-3α,24-diol 
bisglucuronide 13 

713 
(65) 

- 537 
(100) 

519       
(2) 

- 175 
(10) 

157    
(1) 

129       
(2) 

113     
(35) 

85            
(30) 

75        
(25) 

5α-Pregnane-3β,20S-diol 
bisglucuronide 14 

671 
(80) 

595  
(15) 

495 
(30) 

- - 175  
(10) 

157  
(10) 

129     
(10) 

113     
(70) 

85          
(100) 

75       
(75) 
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Pregn-5-ene-3β,20S-diol 
bisglucuronide 15 

669 
(65) 

593    
(5) 

493 
(25) 

475       
(5) 

- 175 
(10) 

157  
(10) 

129     
(10) 

113     
(65) 

85          
(100) 

75       
(60) 

Pregn-5-ene-3β,20R-diol 
bisglucuronide 16 

669  
(100) 

593  
(10) 

493 
(20) 

475       
(5) 

- 175  
(5) 

157  
(20) 

129       
(5) 

113     
(55) 

85            
(90) 

75       
(65) 

 

Table S3. Fragmentation of bisglucuronides di-anion precursor ions [M-2H]2- (26 V cone voltage, 20 eV collision energy) 

Compound [M-H-
C2H4O3]- 

[M-H-
gluc]- 

[M-H-
gluc-H2O]- 

[M-
2H]2- 

[M-H-
2gluc]- 

[gluc-
H]- 

[gluc-H-
H2O]- 

[gluc-H-
H2O-CO]- 

[gluc-H-
H2O-CO2]- 

[gluc-H-H2O-
CO2-CO]- 

[C2H3O3]- 

5α-Androstane-3β,17α-diol 
bisglucuronide 5 

567  
(20) 

467 
(30) 

- 321 
(100) 

- - 157  
(10) 

129     
(10) 

113     
(10) 

85            
(25) 

75       
(40) 

5α-Androstane-3β,17β-diol 
bisglucuronide 6 

567  
(15) 

467 
(25) 

449       
(2) 

321 
(100) 

- - - 129       
(5) 

113     
(20) 

85            
(10) 

75       
(20) 

Estradiol bisglucuronide 9 - 447 
(55) 

- 311 
(70) 

271 
(25) 

175 
(20) 

157    
(5) 

129     
(20) 

113     
(75) 

85          
(100) 

75       
(40) 

Androst-5-ene-3β,17β-diol 
bisglucuronide 10 

565  
(10) 

465 
(10) 

- 320 
(100) 

- 175 
(2) 

157  
(10) 

129     
(10) 

113     
(10) 

85            
(20) 

75       
(40) 

Androst-4-ene-3β,17β-diol 
bisglucuronide 11 

565  
(10) 

465 
(50) 

447     
(30) 

320 
(100) 

- 175 
(5) 

157    
(2) 

129     
(10) 

113     
(10) 

85            
(20) 

75       
(40) 

19-Norandrost-4-ene-3β,17β-diol 
bisglucuronide 12 

551    
(5) 

451 
(30) 

433     
(25) 

313 
(100) 

- - 157  
(10) 

129     
(15) 

113     
(10) 

85            
(30) 

75       
(40) 
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5β-Cholane-3α,24-diol 
bisglucuronide 13 

637    
(5) 

537 
(15) 

- 356 
(100) 

- - - 129       
(5) 

113       
(3) 

85            
(10) 

75       
(15) 

5α-Pregnane-3β,20S-diol 
bisglucuronide 14 

595  
(10) 

495 
(20) 

- 335 
(100) 

- 175 
(1) 

157  
(10) 

129       
(5) 

113     
(10) 

85            
(20) 

75       
(40) 

Pregn-5-ene-3β,20S-diol 
bisglucuronide 15 

593  
(15) 

493 
(20) 

475     
(10) 

334 
(100) 

- 175 
(2) 

157  
(10) 

129       
(5) 

113     
(10) 

85            
(40) 

75       
(20) 

Pregn-5-ene-3β,20R-diol 
bisglucuronide 16 

593  
(30) 

493 
(40) 

475     
(10) 

334 
(100) 

- - 157    
(1) 

129     
(15) 

113     
(30) 

85            
(10) 

75       
(45) 

 

Table S4. Fragmentation of sulfate glucuronides mono-anion precursor ions [M-H]- (70 V cone voltage, 50 eV collision energy) 

Compound [M-H]- 
[M-H-
SO3]- 

[M-H-
gluc]- 

[M-H-
gluc-H2O]- 

[M-H-
gluc-SO3]- 

[gluc-H-
H2O-CO2]- 

[HSO4]- [•SO3]- 
[gluc-H-H2O-
CO2-CO]- 

[C2H3O3]- 

5α-Androstane-3β,17β-diol 3-sulfate     

17-glucuronide 23 
547 
(50) 

- 
371 
(100) 

- - - 
97    
(80) 

- 
85              
(5) 

- 

Androst-5-ene-3β,17β-diol 3-sulfate      

17-glucuronide 24 
545 
(20) 

- 
369 
(40) 

- - 
113     
(20) 

97  
(100) 

- 
85            
(10) 

75       
(15) 

Estradiol 3-sulfate 17-glucuronide 25 527 
(30) 

447 
(40) 

351 
(100) 

- 
271     
(85) 

113     
(35) 

- 
80  
(85) 

85            
(15) 

- 

5α-Androstane-3β,17β-diol 3-glucuronide 

17-sulfate 26 
547 
(25) 

- 
371 
(100) 

353     
(10) 

- - 
97    
(50) 

- - - 
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5α-Androstane-3β,17α-diol 3-glucuronide 

17-sulfate 27 
547 
(30) 

- 
371 
(100) 

353       
(5) 

- - 
97    
(75) 

- 
85            
(20) 

75       
(15) 

Estradiol 3-glucuronide 17-sulfate 28 527 
(30) 

- 
351 
(100) 

- - - 
97    
(75) 

- - - 

Androst-4-ene-3β,17β-diol 3-glucuronide 

17-sulfate 29 
545 
(50) 

- 
369 
(50) 

351   
(100) 

- - 
97    
(20) 

- - - 

Androst-4-ene-3β,17α-diol 3-glucuronide 

17-sulfate 30 
545 
(15) 

- 
369 
(20) 

351     
(45) 

- - 
97  
(100) 

- 
85            
(30) 

75       
(10) 

Pregn-5-ene-3β,20R-diol 3-sulfate        

20-glucuronide 31 
573 
(25) 

- 
397 
(50) 

379       
(5) 

- 
113     
(10) 

97  
(100) 

- 
85            
(40) 

75       
(25) 

Pregn-5-ene-3β,20S-diol 3-sulfate        

20-glucuronide 32 
573 
(20) 

- 
397 
(15) 

- - 
113     
(10) 

97  
(100) 

- 
85            
(30) 

75       
(15) 
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Table S5. Fragmentation of sulfate glucuronides di-anion precursor ions [M-2H]2- (26 V cone voltage, 20 eV collision energy) 

Compound [M-H-
C2H4O3]- 

M-H-
C3H3O5]- 

[M-H-
C3H5O5]- 

[M-H-
C5H7O5]- 

[M-H-
gluc]- 

[M-H-
gluc-
H2O]- 

[M-H-
C7H12O7]- 

[M-
2H]2- 

[gluc-
H-
H2O-
CO2]- 

[HSO4]- [gluc-H-
H2O-
CO2-
CO]- 

[C2H3O3]- Others 

5α-Androstane-

3β,17β-diol 3-

sulfate 17-

glucuronide 23 

471  
(60) 

- 425  
(40) 

399     
(20) 

371  
(100) 

353 
(15) 

339     
(20) 

273 
(60) 

113 
(20) 

97    
(30) 

85         
(20) 

75       
(30) 

157 (20) 
[gluc-H-
H2O]- 

Androst-5-ene-

3β,17β-diol 3-

sulfate 17-

glucuronide 24 

469  
(40) 

- 423  
(25) 

397      
(10) 

369  
(80) 

- 337     
(35)  

272 
(40) 

113  
(15) 

97  
(100) 

85       
(65) 

75       
(85) 

129 (40) 
[gluc-H-
H2O-CO]- 

Estradiol 3-

sulfate 17-

glucuronide 25 

451  
(50) 

- 405  
(50) 

- 351 
(85) 

333 
(75) 

319     
(70) 

263 
(50) 

113  
(40) 

- 85       
(70) 

75     
(100) 

271 (85) 
[M-H-gluc-
SO3]- 

239 (85) 
[M-H-
C7H12O7-
SO3]- 

5α-Androstane-

3β,17β-diol 3-

glucuronide 17-

sulfate 26 

471  
(50) 

427  
(30) 

- 399     
(45) 

371 
(70) 

353 
(100) 

339     
(20) 

273 
(70) 

113  
(40) 

97    
(45) 

85       
(70) 

75       
(60) 

264 (15) 
[M-2H-
H2O]2- 
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5α-Androstane-

3β,17α-diol 3-

glucuronide 17-

sulfate 27 

471  
(70) 

427  
(40) 

- - 371 
(60) 

353 
(40) 

- 273 
(90) 

113  
(85) 

97    
(60) 

85       
(90) 

75     
(100) 

- 

Estradiol 3-

glucuronide 17-

sulfate 28a 

- - - - 351 
(70) 

- - - - 97    
(20) 

85       
(60) 

75         
(40) 

175 (100) 
[gluc-H]- 

Androst-4-ene-

3β,17β-diol 3-

glucuronide 17-

sulfate 29 

469  
(25) 

- 423  
(10) 

397     
(20) 

369 
(90) 

351 
(50) 

337     
(35) 

272 
(25) 

113  
(25) 

97    
(10) 

85       
(20) 

75     
(100) 

- 

Androst-4-ene-

3β,17α-diol 3-

glucuronide 17-

sulfate 30 

- - 423  
(20) 

- 369 
(100) 

351 
(55) 

337     
(25) 

272 
(40) 

- 97    
(35) 

85       
(25) 

75       
(60) 

- 

Pregn-5-ene-

3β,20R-diol 3-

sulfate 20-

glucuronide 31 

497  
(15) 

- 451  
(20) 

425      
(10) 

397 
(50) 

379 
(15) 

- 286 
(40) 

113  
(20) 

97    
(95) 

85       
(65) 

75     
(100) 

- 

Pregn-5-ene-

3β,20S-diol 3-

sulfate 20-

glucuronide 32 

497  
(10) 

- 451  
(30) 

425     
(10) 

397 
(60) 

379 
(15) 

- 286 
(100) 

113  
(10) 

97    
(65) 

85       
(40) 

75       
(55) 

277 (20) 
[M-2H-
H2O]2- 

a Di-anion precursor ion [M-2H]2- was not observed. 
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Chapter 4: Confirmation of male urine sample 

 

Table S6. SRM confirmation of pregn-5-ene-3β,20R-diol 3-sulfate 20-glucuronide 31 and pregn-5-ene-3β,20S-diol 3-sulfate 20-glucuronide 

32 according to WADA criteria [7] 

Analyte 

Retention time (min) 

(maximum tolerance) 
Ion 

transition 

Relative abundance (%) 

(maximum tolerance) 

Cone 

voltage 

(V) 

Collision 

energy 

(eV) 

Proposed product ion 

Standard Sample Sample Standard 

Pregn-5-ene-3β,20R-diol    

3-sulfate 20-glucuronide 
7.51 

7.43 

(7.41-7.61) 

286.1  

397.2 
100 

100 

(90-100) 
26 20 [M-2H-(gluc-H)]- 

286.1  

379.2 
14 

14 

(9-19) 
26 20 [M-2H-(gluc-H)-H2O]- 

286.1  

277.1 
15 

13 

(10-20) 
26 10 [M-2H-H2O]2- 

Pregn-5-ene-3β,20S-diol    

3-sulfate 20-glucuronide 
9.03 

8.97 

(8.93-9.13) 

286.1  

397.2 
100 

100 

(90-100) 
26 20 [M-2H-(gluc-H)]- 

286.1  

379.2 
19 

20 

(14-24) 
26 20 [M-2H-(gluc-H)-H2O]- 

286.1  

277.1 
9 

6 

(4-14) 
26 10 [M-2H-H2O]2- 
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Chapter 5: Experimental 

Materials 

Chemicals and solvents including sulfur trioxide-pyridine complex (SO3·py), sodium 

borohydride (NaBH4), cerium(III) chloride heptahydrate (CeCl3.7H2O), para-toluenesulfonyl 

hydrazide, hydrogen fluoride-pyridine (~70% hydrogen fluoride, ~30% pyridine), 

bis(acetoxy)iodobenzene (BAIB), 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 

dihydrotestosterone (DHT, 17β-hydroxy-5α-androstan-3-one), estrone (3-hydroxyestra-

1,3,5(10)-trien-17-one), estradiol (estra-1,3,5(10)-triene-3,17β-diol), testosterone 

propionate 47 (17β-hydroxyandrost-4-en-3-one 17-propionate), and pregnenolone (3β-

hydroxypregn-5-en-20-one) were purchased from Sigma–Aldrich (Castle Hill, Australia). 

Epiandrosterone 22 (EA, 3β-hydroxy-5α-androstan-17-one), etiocholanolone (3α-hydroxy-

5β-androstan-17-one), testosterone 46 (17β-hydroxyandrost-4-en-3-one), nandrolone (17β-

hydroxyestr-4-en-3-one), androst-5-ene-3β,17β-diol, 5β-cholane-3α,24-diol, and 5α-

pregnane-3β,20S-diol were purchased from Steraloids (Newport RI, USA). 

Dehydroepiandrosterone 1 (DHEA, 3β-hydroxyandrost-5-en-17-one) was obtained from 

BDH (Poole, UK). 13C-Labelled glucose (99 atom %) was purchased from Omicron 

Biochemicals Incorporated (South Bend, IN, USA). 18O-Enriched water (D2
18O: 99.5+ atom 

% 18O and 99.9+ atom % D) was purchased from Bio-Rad Laboratories (Hercules, CA, 

USA). Epitestosterone (epiT, 17α-hydroxyandrost-4-en-3-one) and epidihydrotestosterone 

34 (epiDHT, 17α-hydroxy-5α-androstan-3-one) were synthesised from testosterone 46 and 

DHT respectively according to literature methods [8]. Nandrolone sulfate and 

etiocholanolone sulfate were synthesised from nandrolone and etiocholanolone, 

respectively, according to literature methods [2]. DHEA 3-glucuronide 4 was synthesised 

from DHEA 1 according to literature methods [1]. The Escherichia coli (E. coli) E504G 

glucuronylsynthase mutant (typically 5.4-16.5 mg mL-1) and α-D-glucuronyl fluoride 2 were 

prepared according to literature methods [9]. The Pseudomonas aeruginosa arylsulfatase 

(PaS) wild type enzyme (60 mg mL-1) was prepared according to literature methods [4]. 

Acetic anhydride was freshly distilled and sodium methoxide was freshly prepared using 

literature methods [10]. MilliQ water was used in all aqueous solutions and in the liquid 

chromatography mobile phase. Liquid chromatography (gradient) grade methanol was 

obtained from Merck (Kilsyth, Australia). N,N-Dimethylformamide (DMF), sodium acetate, 

and aqueous ammonia solution were obtained from Chem-Supply (Gillman, Australia). 

Formic acid was obtained from Ajax Chemicals (Auburn, Australia). Solid-phase extraction 

(SPE) was performed using Waters (Rydalmere, Australia) Oasis weak anion exchange 
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(WAX) 6cc cartridges (PN 186004647), Oasis WAX 3 cc cartridges (PN 186002492), or Sep-

Pak Vac C18 3cc cartridges (PN 186004619).  

Instruments 

The 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded using either a 

Bruker Avance 400 MHz, 600 MHz, 700 MHz, or 800 MHz spectrometer at 298 K using 

deuterated methanol (CD3OD) or other deuterated solvent specified. Data is reported in 

parts per million (ppm), referenced to residual protons or 13C in the deuterated solvent 

specified (for CD3OD: 1H 3.31 ppm, 13C 49.00 ppm), with multiplicity assigned as follows: br 

= broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, or combinations of the 

above. Coupling constants J are reported in Hertz (Hz). Low-resolution mass spectrometry 

(LRMS) and high-resolution mass spectrometry (HRMS) for compound characterisation 

were performed using negative or positive electrospray ionisation (-ESI or +ESI) on a 

Micromass ZMD ESI-Quad or a Waters LCT Premier XE mass spectrometer. Infrared 

spectra were recorded on a Perkin-Elmer 1800 Series FTIR spectrometer. Melting points 

were measured on an SRS Opti-melt MPA 100 automated melting point system and are 

uncorrected. Optical rotations were recorded in CHCl3 or H2O using a Rudolph Research 

Analytical Autopol I Automatic Polarimeter (sodium D line, 298 K). Reactions were monitored 

by analytical thin layer chromatography (TLC) using Merck (Bayswater, Australia) Silica gel 

60 TLC plates with 7:2:1 ethyl acetate:methanol:water eluant, unless otherwise specified 

and were visualised by staining with a solution of concentrated sulfuric acid:methanol (5% 

v/v), with heating as required. Anion exchange column chromatography was performed 

using Dowex 1x8, 200-400, Mesh Cl resin. 

General procedures 

GP1. General procedure for the small scale reduction reaction of a steroid sulfate or 

steroid glucuronide containing an α,β-unsaturated ketone, with purification by SPE 

The procedure followed the literature with minor modifications [2]. A solution of steroid 

sulfate or glucuronide (10-19 µmol) in methanol (100 µL) was treated with cerium(III) chloride 

heptahydride (5.0 equiv.), and then a portionwise addition of solid NaBH4 over 1 minute (5.0 

equiv.) with cooling on ice. After the vigorous reaction had subsided, the reaction was 

capped, allowed to warm to room temperature and stirred for 15 minutes. The reaction was 

quenched by the slow addition of water (4 mL), and then purified by SPE as per Section 

2.4.2 to afford the desired steroid diol monosulfate or monoglucuronide as the corresponding 

ammonium salt. A 1H NMR spectrum was obtained and integration of a suitable signal 
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(typically C19-H3) of both the steroidal ketone and alcohol provided a ratio of the two 

compounds which was used to determine the percent conversion of the reduction reaction. 

GP2. General procedure for the small scale sulfation reaction of a steroid with 

purification by SPE 

The procedure followed the literature with minor modifications [2]. A solution of SO3·py (50.0 

mg, 314 µmol) in DMF (500 µL) was added to a solution of steroid (5.0 mg) in 1,4-dioxane 

(500 µL) and the resulting solution was then stirred in a capped vial at room temperature for 

16 h. The reaction was then quenched with water (7.5 mL) and subjected to purification by 

SPE as per Section 2.4.2 then Section 2.4.1 to afford the desired steroid sulfate as the 

corresponding ammonium salt. 

Reduction reaction 

Reduction of steroid 

5α-Androstane-3β,17β-diol 7 [11] 

The reaction was conducted with epiandrosterone 22 (EA, 5.0 mg, 17 µmol) as per the 

general procedure 2.4.4 to yield the title compound 7 as a colourless solid with > 98% 

conversion. 1H NMR (400 MHz, CD3OD):  3.55 (1H, t, J 8.6 Hz, C17-H), 3.50 (1H, m, C3-

H), 2.01-0.62 (22H, m), 0.85 (3H, s, C18-H3), 0.72 (3H, s, C19-H3). The Rf, 1H NMR, 13C 

NMR, LRMS, and HRMS matched the literature [11]. 

Androst-4-ene-3β,17β-diol 50 [12],[13] 

The reaction was conducted with testosterone 46 (5.0 mg, 17 µmol) as per the general 

procedure GP1 to yield the title compound 50 as a colourless solid with > 98% conversion. 

The 400 MHz 1H NMR integration of the C3-H protons showed 1:9 ratio of the 3α:3β 

diastereomers. Data is reported for the major diastereomer where relevant. 1H NMR (400 

MHz, CD3OD):  5.25 (1H, s, C4-H), 4.06 (1H, m, C3-H), 3.55 (1H, t, J 8.7 Hz, C17-H), 2.23 

(1H, m), 2.04-1.94 (2H, m), 1.90-1.81 (2H, m), 1.79-1.71 (2H, m), 1.63-1.22 (8H, m), 1.09 

(3H, s, C19-H3), 1.04-0.70 (4H, m), 0.76 (3H, s, C18-H3). The 1H NMR and 13C NMR 

matched the literature [12],[13].  

19-Norandrost-4-ene-3β,17β-diol 51 [14] 

The reaction was conducted with nandrolone (5.0 mg, 18 µmol) as per the general procedure 

GP1 to yield the title compound 51 as a colourless solid with > 98% conversion. The 400 

MHz 1H NMR integration of the C4-H protons showed 1:6 ratio of the 3α:3β diastereomers. 

Data is reported for the major diastereomer where relevant. Rf 0.68; 1H NMR (400 MHz, 
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CD3OD):  5.35 (1H, s, C4-H), 4.07 (1H, m, C3-H), 3.57 (1H, t, J 8.6 Hz, C17-H), 2.26-2.21 

(1H, m), 2.09-1.93 (4H, m), 1.85-1.70 (4H, m), 1.59 (1H, m), 1.47 (1H, m), 1.33-0.80 (8H, 

m), 0.77 (3H, s, C18-H3), 0.59 (1H, m); 13C NMR (100 MHz, CD3OD):  143.4 (C5), 125.7 

(C4), 82.5 (C17), 68.1 (C3), 52.0, 51.3, 44.2, 43.2, 42.3, 37.9, 36.1, 32.9, 32.7, 30.6, 27.3, 

26.9, 24.2, 11.6 (C18); LRMS (+ESI): m/z 299 (100%, [C18H28O2Na]+); HRMS (+ESI): calcd. 

for [C18H28O2Na]+ 299.1987, found 299.1986. 

Pregn-5-ene-3β,20R-diol (20S:20R = 1:6) 52 [15] 

The reaction was conducted with pregnenolone (5.0 mg, 16 µmol) as per the general 

procedure 2.4.4 to yield the title compound 52 as a colourless solid with > 98% conversion. 

The 400 MHz 1H NMR integration of the C18-H3 protons showed 1:6 ratio of the 20S:20R 

diastereomers. Data is reported for the major diastereomer where relevant. 1H NMR (400 

MHz, CD3OD):  5.34 (1H, d, J 5.2 Hz, C6-H), 3.64 (1H, m, C20-H), 3.40 (1H, m, C3-H), 

2.27-2.14 (3H, m), 2.00-1.77 (3H, m), 1.71-1.44 (7H, m), 1.33 (1H, m), 1.24-0.92 (6H, m), 

1.11 (3H, d, J 6.2 Hz, C21-H3), 1.03 (3H, s, C19-H3), 0.77 (3H, s, C18-H3). The 1H NMR and 

13C NMR matched the literature [15]. 

Pregn-5-ene-3β,20S-diol (20S:20R = 2:1) 53 

The reaction was conducted according to literature method with minor modifications [16]. 

Pregnenolone tosylhydrazone 54 (derived from pregnenolone, 5.0 mg, 16 µmol) was 

dissolved in 10:1 2-propanol:water (480 µL). Sodium borohydride (4.2 mg, 0.11 mmol, 6.9 

equiv.) was added to the solution, and the reaction mixture was stirred for 16 h at room 

temperature. The solution was then quenched with water (5 mL) and subjected to purification 

by WAX SPE as per Section 2.4.2 to yield the title compound as a colourless solid with > 

98% conversion. The 400 MHz 1H NMR integration of the C18-H3 protons showed a 2:1 ratio 

of the 20S:20R diastereomers. 20S:  1.21 (3H, d, J 6.2 Hz, C21-H3), 0.70 (3H, s, C18-H3), 

20R:  1.11 (3H, d, J 6.1 Hz, C21-H3), 0.78 (3H, s, C18-H3); LRMS (+ESI): m/z 341 (100%, 

[C21H34O2Na]+). 

Androst-4-ene-3β,17β-diol 17-propionate 55 

The reaction was conducted with testosterone propionate 47 (5.0 mg, 15 µmol) as per the 

general procedure GP1 to yield the title compound 55 as a colourless solid with > 98% 

conversion. The 400 MHz 1H NMR integration of the C3-H protons showed 1:8 ratio of the 

3α:3β diastereomers. Data is reported for the major diastereomer where relevant. Rf 0.44; 

1H NMR (400 MHz, CD3OD):  5.27 (1H, s, C4-H), 4.59 (1H, t, J 8.4 Hz, C17-H), 4.06 (1H, 

m, C3-H), 2.32 (2H, q, J 7.7 Hz, C21-H), 2.28-2.09 (2H, m), 2.02 (1H, m), 1.87 (1H, m), 1.80-
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1.63 (4H, m), 1.60-1.24 (7H, m), 1.20-1.04 (2H, m), 1.11 (3H, t, J 8.0 Hz, C22-H3), 1.09 (3H, 

s, C19-H3), 0.91 (1H, m), 0.85 (3H, s, C18-H3), 0.77 (1H, m); 13C NMR (100 MHz, CD3OD): 

 176.2 (C20), 147.6 (C5), 125.1 (C4), 84.0 (C17), 68.4 (C3), 56.1, 51.8, 43.8, 38.5, 38.1, 

37.1, 36.8, 33.9, 33.2, 29.9, 28.5, 28.5, 24.5, 21.7, 19.4 (C18), 12.5 (C19), 9.6 (C22); LRMS 

(+ESI): m/z 369 (100%, [C22H34O3Na]+); HRMS (+ESI): calcd. for [C22H34O3Na]+ 369.2406, 

found 369.2413. 

Reduction of steroid mono-glucuronide 

5α-Androstane-3β,17β-diol 3-glucuronide, ammonium salt 8 

The reaction was conducted with EA 3-glucuronide, ammonium salt 17 [1] (derived from EA 

22, 5.0 mg, 17 µmol) as per the general procedure 2.4.4 to yield the title compound 8 as a 

colourless solid with > 98% conversion. Rf 0.29; 1H NMR (400 MHz, CD3OD):  4.40 (1H, d, 

J 7.7 Hz, C20-H), 3.78 (1H, m, C3-H), 3.58-3.53 (2H, m, C17-H and C24-H), 3.46-3.34 (2H, 

m, C23-H and C22-H), 3.17 (1H, t, J 8.2 Hz, C21-H), 2.01-0.87 (21H, m), 0.85 (3H, s, C18-

H3), 0.72 (3H, s, C19-H3), 0.66 (1H, m); 13C NMR (175 MHz, CD3OD):  102.0 (C20), 82.5 

(C17), 79.0 (C3), 77.9 (C22), 76.4 (C24), 75.0 (C21), 73.8 (C23), 56.0, 52.4, 46.1, 44.1, 

38.4, 38.1, 37.0, 36.8, 35.3, 32.9, 30.7, 30.3, 29.9, 24.3, 22.0, 12.8 (C18), 11.7 (C19), C25 

not observed; LRMS (-ESI): m/z 467 (100%, [C25H39O8]-); HRMS (-ESI): calcd. for 

[C25H39O8]- 467.2645, found 467.2639. 

5α-Androstane-3β,17β-diol 17-glucuronide, ammonium salt 40 

The reaction was conducted with dihydrotestosterone (DHT) 17-glucuronide, ammonium 

salt 39 [1] (derived from 19% conversion of DHT, assumed 3.2 µmol) as per the general 

procedure 2.4.4 to yield the title compound 40 as a colourless solid with > 98% conversion. 

The 400 MHz 1H NMR integration of the C3-H protons showed 1:9 ratio of the 3α:3β 

diastereomers. Data is reported for the major diastereomer where relevant. Rf 0.25; 1H NMR 

(700 MHz, CD3OD):  4.35 (1H, d, J 7.8 Hz, C20-H), 3.80 (1H, t, J 8.7 Hz, C17-H), 3.52 (1H, 

d, J 9.8 Hz, C24-H), 3.42 (1H, t, J 9.4 Hz, C23-H), 3.36 (1H, t, J 9.1 Hz, C22-H), 3.19 (1H, 

t, J 8.5 Hz, C21-H), 2.05 (1H, m), 1.97 (1H, m), 1.77-0.89 (20H, m), 0.84 (3H, s, C18-H3), 

0.83 (3H, s, C19-H3), 0.66 (1H, m); 13C NMR (175 MHz, CD3OD):  104.5 (C20), 89.5 (C17), 

78.0 (C22), 76.5 (C24), 75.3 (C21), 73.8 (C23), 71.9 (C3), 56.0, 52.3, 46.3, 44.4, 39.0, 38.3, 

36.8, 36.7, 32.8, 32.2, 29.9, 29.6, 24.3, 22.0, 12.8 (C18), 12.1 (C19), C25 not observed and 

one additional carbon peak overlapping or obscured; LRMS (-ESI): m/z 467 (80%, 

[C25H39O8]-); HRMS (-ESI): calcd. for [C25H39O8]- 467.2645, found 467.2643.  
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5α-Androstane-3β,17α-diol 17-glucuronide, ammonium salt 35 

The reaction was conducted with epidihydrotestosterone (epiDHT) 17-glucuronide, 

ammonium salt 56 (derived from 36% conversion of epiDHT 34, assumed 6.1 µmol) as per 

the general procedure 2.4.4 to yield the title compound 35 as a colourless solid with > 98% 

conversion. The 400 MHz 1H NMR integration of the C3-H protons showed 1:8 ratio of the 

3α:3β diastereomers. Data is reported for the major diastereomer where relevant. Rf 0.30; 

1H NMR (400 MHz, CD3OD):  4.26 (1H, d, J 7.7 Hz, C20-H), 3.88 (1H, d, J 5.5 Hz, C17-H), 

3.55 (1H, d, J 9.6 Hz, C24-H), 3.44 (1H, t, J 9.3 Hz, C23-H), 3.38 (1H, t, J 8.9 Hz, C22-H), 

3.19 (1H, t, J 8.4 Hz, C21-H), 1.98 (1H, m), 1.76-0.66 (22H, m), 0.83 (3H, s, C19-H3), 0.71 

(3H, s, C18-H3); 13C NMR (175 MHz, CD3OD):  176.1 (C25), 101.9 (C20), 86.4 (C17), 78.0 

(C22), 76.9 (C24), 74.9 (C21), 73.7 (C23), 71.8 (C3), 55.7, 50.7, 46.2, 46.1, 38.4, 38.3, 37.3, 

36.7, 33.7, 32.9, 32.1, 30.0, 29.9, 25.8, 21.9, 17.5 (C18), 12.8 (C19); LRMS (-ESI): m/z 467 

(100%, [C25H39O8]-); HRMS (-ESI): calcd. for [C25H39O8]- 467.2645, found 467.2648. 

Estradiol 3-glucuronide, ammonium salt 41 [1] 

The reaction was conducted with estrone 3-glucuronide, ammonium salt 43 [1] (derived from 

37% conversion of estrone, assumed 7.0 µmol) as per the general procedure 2.4.4 to yield 

the title compound 41 as a colourless solid with > 98% conversion. Rf 0.27; 1H NMR (700 

MHz, CD3OD):  7.19 (1H, d, J 8.6 Hz, C1-H), 6.87 (1H, dd, J 8.7, 2.6 Hz, C2-H), 6.81 (1H, 

d, J 2.6 Hz, C4-H), 4.87 (1H, d, J 7.1 Hz, C19-H), 3.73 (1H, d, J 9.3 Hz, C23-H), 3.66 (1H, 

t, J 8.6 Hz, C17-H), 3.52-3.46 (3H, m, C22-H, C21-H, and C20-H), 2.83-2.81 (2H, m, C6-

H2), 2.32 (1H, m), 2.17 (1H, td, J 11.3, 4.3 Hz), 2.04 (1H, m), 1.96 (1H, m), 1.89 (1H, m), 

1.71 (1H, m), 1.54-1.26 (6H, m), 1.20 (1H, td, J 11.6, 7.3 Hz), 0.78 (3H, s, C18-H3); 13C NMR 

(150 MHz, CD3OD):  157.0 (C3), 139.0, 135.8, 127.2, 118.0, 115.4, 102.7 (C19), 82.5 

(C17), 77.8 (C21), 74.8 (C20), 73.6 (C22), 51.4, 45.5, 44.4, 40.4, 38.0, 30.7, 30.7, 28.4, 

27.6, 24.0, 11.7 (C18), C24 and C23 not observed; LRMS (-ESI): m/z 447 (100%, 

[C24H31O8]-); HRMS (-ESI): m/z calcd. for [C24H31O8]- 447.2019, found 447.2015. 

Androst-4-ene-3β,17β-diol 17-glucuronide, ammonium salt 45 

The reaction was conducted with testosterone 17-glucuronide, ammonium salt 19 [1] 

(derived from 61% conversion of testosterone 46, assumed 10 µmol) as per the general 

procedure GP1 to yield the title compound 45 as a colourless solid with > 98% conversion. 

The 400 MHz 1H NMR integration of the C3-H protons showed 1:11 ratio of the 3α:3β 

diastereomers. Data is reported for the major diastereomer where relevant. Rf 0.28; 1H NMR 

(400 MHz, CD3OD):  5.25 (1H, s, C4-H), 4.36 (1H, d, J 7.8 Hz, C20-H), 4.06 (1H, m, C3-
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H), 3.79 (1H, t, J 8.6 Hz, C17-H), 3.51 (1H, d, J 9.0 Hz, C24-H), 3.43-3.37 (2H, m, C23-H 

and C22-H), 3.19 (1H, t, J 8.1 Hz, C21-H), 2.22 (1H, m), 2.10-1.98 (3H, m), 1.87 (1H, m), 

1.77-1.15 (10H, m), 1.08 (3H, s, C19-H3), 1.02-0.80 (3H, m), 0.87 (3H, s, C18-H3), 0.74 (1H, 

m); 13C NMR (150 MHz, CD3OD):  147.8 (C5), 124.9 (C4), 104.7 (C20), 89.7 (C17), 77.9 

(C22), 75.3 (C21), 73.7 (C23), 68.5 (C3), 56.2, 52.0, 44.3, 38.8, 38.5, 37.2, 36.8, 33.9, 33.2, 

29.9, 29.6, 24.2, 21.8, 19.4 (C18), 12.0 (C19), C25 and C24 not observed; LRMS (-ESI): 

m/z 465 (100%, [C25H37O8]-); HRMS (-ESI): calcd. for [C25H37O8]- 465.2488, found 465.2485. 

Reduction of steroid mono-sulfate 

Androst-5-ene-3β,17β-diol 3-sulfate, ammonium salt 57 [17] 

The reaction was conducted with dehydroepiandrosterone (DHEA) 3-sulfate, ammonium 

salt 58 [2] (derived from DHEA 1, 5.5 mg, 19 µmol) as per the general procedure 2.4.4 to 

yield the title compound 57 as a colourless solid with > 98% conversion. Rf 0.52; 1H NMR 

(400 MHz, CD3OD):  5.39 (1H, d, J 5.3 Hz, C6-H), 4.13 (1H, tt, J 11.5, 4.7 Hz, C3-H), 3.58 

(1H, t, J 8.6 Hz, C17-H), 2.54 (1H, ddd, J 13.1, 4.8, 2.0 Hz, C16-H), 2.35 (1H, m, C16-H), 

2.09-0.94 (17H, m), 1.05 (3H, s, C19-H3), 0.75 (3H, s, C18-H3); 13C NMR (100 MHz, 

CD3OD):  141.7 (C5), 123.1 (C6), 82.5 (C17), 79.8 (C3), 52.7, 51.8, 43.9, 40.4, 38.5, 37.9, 

37.8, 33.3, 32.7, 30.6, 30.0, 24.4, 21.8, 19.8 (C18), 11.5 (C19); LRMS (-ESI): m/z 369 

(100%, [C19H29O5S]-), 97 (20%, [HSO4]-); HRMS (-ESI): calcd. for [C19H29O5S]- 369.1736, 

found 369.1734. 

Estradiol 3-sulfate, ammonium salt 44 [2]  

The reaction was conducted with estrone 3-sulfate, ammonium salt 59 [2] (derived from 90% 

conversion of estrone, assumed 20 µmol) as per the general procedure 2.4.4 to yield the 

title compound 44 as a colourless solid with > 98% conversion. 1H NMR (400 MHz, CD3OD): 

 7.24 (1H, d, J 8.5 Hz, C1-H), 7.03 (1H, dd, J 8.6, 2.5 Hz, C2-H), 6.99 (1H, d, J 2.5 Hz, C4-

H), 3.67 (1H, t, J 8.6 Hz, C17-H), 2.86-2.83 (2H, m, C6-H2), 2.37-1.17 (13H, m), 0.77 (3H, 

s, C18-H3). The Rf, 1H NMR, 13C NMR, LRMS, and HRMS matched the literature [2].  

5α-Androstane-3β,17β-diol 17-sulfate, ammonium salt 60 

The reaction was conducted with DHT 17-sulfate, ammonium salt 61 [2] (derived from DHT, 

5.5 mg, 19 µmol) as per the general procedure 2.4.4 to yield the title compound 60 as a 

colourless solid with > 98% conversion. The 400 MHz 1H NMR integration of the C3-H 

protons showed 1:9 ratio of the 3α:3β diastereomers. Data is reported for the major 

diastereomer where relevant. Rf 0.48; 1H NMR (400 MHz, CD3OD):  4.23 (1H, t, J 8.5 Hz, 

C17-H), 3.51 (1H, tt, J 10.8, 4.5 Hz, C3-H), 2.15 (1H, ddt, J 15.4, 9.4, 4.7 Hz), 1.93 (1H, dt, 
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J 12.5, 2.9 Hz), 1.79-0.89 (19H, m), 0.86 (3H, s, C18-H3), 0.81 (3H, s, C19-H3), 0.67 (1H, 

dt, J 12.4, 4.2 Hz); 13C NMR (100 MHz, CD3OD):  88.3 (C17), 71.8 (C3), 55.9, 51.9, 46.3, 

44.0, 38.9, 38.3, 38.1, 36.8, 36.7, 32.8, 32.1, 29.9, 29.2, 24.4, 21.8, 12.8 (C18), 12.2 (C19); 

LRMS (-ESI): m/z 371 (100%, [C19H31O5S]-), 97 (10%, [HSO4]-); HRMS (-ESI): calcd. for 

[C19H31O5S]- 371.1892, found 371.1895. 

5α-Androstane-3β,17α-diol 17-sulfate, ammonium salt 62 

The reaction was conducted with epiDHT 17-sulfate, ammonium salt 63 (derived from 

epiDHT 34, 5.0 mg, 17 µmol) as per the general procedure 2.4.4 to yield the title compound 

62 as a colourless solid with > 98% conversion. The 400 MHz 1H NMR integration of the C3-

H protons showed 1:10 ratio of the 3α:3β diastereomers. Data is reported for the major 

diastereomer where relevant. Rf 0.48; 1H NMR (400 MHz, CD3OD):  4.31 (1H, d, J 5.8 Hz, 

C17-H), 3.51 (1H, tt, J 9.1, 4.6 Hz, C3-H), 2.15 (1H, m), 1.94 (1H, m), 1.75-0.65 (20H, m), 

0.84 (3H, s, C19-H3), 0.74 (3H, s, C18-H3); 13C NMR (100 MHz, CD3OD):  88.1 (C17), 71.9 

(C3), 55.6, 51.0, 46.2, 46.2, 38.9, 38.3, 37.2, 36.7, 33.7, 32.9, 32.2, 31.2, 30.0, 25.6, 21.8, 

17.3 (C18), 12.8 (C19); LRMS (-ESI): m/z 371 (100%, [C19H31O5S]-), 97 (15%, [HSO4]-); 

HRMS (-ESI): calcd. for [C19H31O5S]- 371.1892, found 371.1892. 

Androst-4-ene-3β,17β-diol 17-sulfate, ammonium salt 64 

The reaction was conducted with testosterone 17-sulfate, ammonium salt 65 [2] (derived 

from testosterone 46, 5.5 mg, 19 µmol) as per the general procedure GP1 to yield the title 

compound 64 as a colourless solid with > 98% conversion. The 400 MHz 1H NMR integration 

of the C3-H protons showed 1:13 ratio of the 3α:3β diastereomers. Data is reported for the 

major diastereomer where relevant. Rf 0.46; 1H NMR (400 MHz, CD3OD):  5.26 (1H, s, C4-

H), 4.21 (1H, t, J 8.5 Hz, C17-H), 4.07 (1H, m, C3-H), 2.26-0.85 (18H, m), 1.08 (3H, s, C19-

H3), 0.83 (3H, s, C18-H3), 0.75 (1H, dt, J 12.2, 4.1 Hz); 13C NMR (100 MHz, CD3OD):  147.8 

(C5), 125.0 (C4), 88.1 (C17), 68.5 (C3), 56.2, 51.6, 43.9, 38.5, 37.9, 37.2, 36.8, 33.9, 33.2, 

29.9, 29.1, 24.4, 21.6, 19.4 (C18), 12.1 (C19); LRMS (-ESI): m/z 369 (100%, [C19H29O5S]-); 

HRMS (-ESI): calcd. for [C19H29O5S]- 369.1736, found 369.1736. 

Androst-4-ene-3β,17α-diol 17-sulfate, ammonium salt 66 

The reaction was conducted with epitestosterone (epiT) 17-sulfate, ammonium salt 67 [2] 

(derived from 95% conversion of epiT, assumed 16 µmol) as per the general procedure GP1 

to yield the title compound 66 as a colourless solid with > 98% conversion. The 400 MHz 1H 

NMR integration of the C3-H protons showed 1:7 ratio of the 3α:3β diastereomers. Data is 

reported for the major diastereomer where relevant. Rf 0.59; 1H NMR (400 MHz, CD3OD):  
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5.28 (1H, s, C4-H), 4.34 (1H, d, J 5.8 Hz, C17-H), 4.09 (1H, m, C3-H), 2.30-0.75 (19H, m), 

1.10 (3H, s, C19-H3), 0.79 (3H, s, C18-H3); 13C NMR (100 MHz, CD3OD):  147.8 (C5), 

124.9 (C4), 87.9 (C17), 68.5 (C3), 55.9, 50.7, 46.1, 38.5, 37.6, 36.9, 34.7, 33.3, 32.8, 31.2, 

29.9, 25.6, 21.6, 19.4 (C18), 17.2 (C19); LRMS (-ESI): m/z 369 (100%, [C19H29O5S]-); HRMS 

(-ESI): calcd. for [C19H29O5S]- 369.1736, found 369.1733. 

Pregn-5-ene-3β,20R-diol 3-sulfate, ammonium salt (20S:20R = 1:6) 68 

The reaction was conducted with pregnenolone 3-sulfate, ammonium salt 69 (derived from 

pregnenolone, 5.0 mg, 16 µmol) as per the general procedure 2.4.4 to yield the title 

compound 68 as a colourless solid with > 98% conversion. The 400 MHz 1H NMR integration 

of the C18-H3 protons showed 1:6 ratio of the 20S:20R diastereomers. 20S =  0.70 (3H, s, 

C18-H3), 20R =  0.78 (3H, s, C18-H3). Data is reported for the major diastereomer where 

relevant. Rf 0.53; 1H NMR (400 MHz, CD3OD):  5.39 (1H, m, C6-H), 4.13 (1H, tt, J 11.0, 4.8 

Hz, C3-H), 3.64 (1H, m, C20-H), 2.53 (1H, dd, J 13.2, 3.0 Hz), 2.36 (1H, m), 2.19-0.94 (18H, 

m), 1.10 (3H, d, J 5.9 Hz, C21-H3), 1.04 (3H, s, C19-H3), 0.78 (3H, s, C18-H3); 13C NMR 

(100 MHz, CD3OD):  141.6 (C5), 123.3 (C6), 79.9 (C3), 70.9 (C20), 59.3, 57.7, 51.8, 43.5, 

40.8, 40.4, 38.5, 37.7, 33.1, 30.0, 26.8, 25.6, 23.8, 22.0, 19.8 (C18), 12.6 (C19), one carbon 

peak overlapping or obscured; LRMS (-ESI): m/z 397 (100%, [C21H33O5S]-), 97 (35%, 

[HSO4]-); HRMS (-ESI): calcd. for [C21H33O5S]- 397.2049, found 397.2049. 

Pregn-5-ene-3β,20S-diol 3-sulfate, ammonium salt (20S:20R = 1:1) 70 

The reaction was conducted according to literature method with minor modifications [16]. 

Pregnenolone tosylhydrazone 3-sulfate, ammonium salt 71 (derived from pregnenolone 3-

sulfate 69, 5.0 mg, 11 mol) was dissolved in 10:1 2-propanol:water (312 µL). Sodium 

borohydride (3.0 mg, 72 mol, 6.5 equiv.) was added to the solution, and the reaction 

mixture was stirred for 16 h at room temperature. The solution was then quenched with 

water (5 mL) and subjected to purification by SPE as per general procedure 2.4.2 to yield 

the title compound 70 as a colourless solid with > 98% conversion. The 400 MHz 1H NMR 

integration of the C18-H3 protons showed a 1:1 ratio of the 20S:20R diastereomers. 20S:  

1.21 (3H, d, J 6.2 Hz, C21-H3), 0.70 (3H, s, C18-H3), 20R:  1.11 (3H, d, J 6.2 Hz, C21-H3), 

0.78 (3H, s, C18-H3); Rf 0.50; LRMS (-ESI): m/z 397 (100%, [C21H33O5S]-), 97 (25%, 

[HSO4]-). 
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Glucuronylation reaction 

Glucuronylation of steroid 

EA glucuronide, ammonium salt 17 [1] 

The reaction was conducted with EA 22 (5.0 mg, 17 µmol) as per the general procedure 

2.4.5. This gave the title compound 17 as a colourless solid with > 98% conversion as 

determined by 400 MHz 1H NMR integration of the C3-H protons. 1H NMR (400 MHz, 

CD3OD):  4.41 (1H, d, J 7.9 Hz, C20-H), 3.77 (1H, m, C3-H), 3.56 (1H, d, J 9.1 Hz, C24-

H), 3.46 (1H, t, J 9.3 Hz, C23-H), 3.38 (1H, t, J 9.0 Hz, C22-H), 3.18 (1H, t, J 8.2 Hz, C21-

H), 2.42 (1H, dd, J 19.1, 8.8 Hz, C16-H), 2.06 (1H, dt, J 18.7, 8.9 Hz, C16-H), 1.99-0.98 

(19H, m), 0.88 (3H, s, C18-H3), 0.87 (3H, s, C19-H3), 0.74 (1H, m). The Rf, 1H NMR, 13C 

NMR, LRMS, and HRMS matched the literature [1].  

DHT glucuronide, ammonium salt 39 [1]  

The reaction was conducted with DHT (5.0 mg, 17 µmol) as per the general procedure 2.4.5. 

This gave the title compound 39 as a colourless solid with 19% conversion as determined 

by 400 MHz 1H NMR integration of the C17-H protons. Rf 0.52; 1H NMR (400 MHz, CD3OD): 

 4.35 (1H, d, J 7.8 Hz, C20-H), 3.82 (1H, t, J 8.6 Hz, C17-H), 3.51 (1H, d, J 9.7 Hz, C24-

H), 3.48-3.33 (2H, m, C23-H and C22-H), 3.19 (1H, t, J 8.2 Hz, C21-H), 2.48 (1H, m), 2.36 

(1H, t, J 14.6 Hz), 2.25-0.76 (20H, m), 1.07 (3H, s, C19-H3), 0.87 (3H, s, C18-H3); 13C NMR 

(175 MHz, CD3OD):  215.0 (C3), 176.8 (C25), 104.5 (C20), 89.3 (C17), 78.0 (C22), 76.4 

(C24), 75.4 (C21), 73.8 (C23), 55.3, 52.1, 45.5, 44.4, 39.7, 39.7, 38.8, 36.9, 36.7, 32.5, 30.8, 

30.0, 29.6, 24.3, 22.2, 12.1 (C18), 11.8 (C19); LRMS (-ESI): m/z 465 (100%, [C25H37O8]-); 

HRMS (-ESI): calcd. for [C25H37O8]- 465.2488, found 465.2482.  

EpiDHT glucuronide 56 

The reaction was conducted with epiDHT 34 (5.0 mg, 17 µmol) as per the general procedure 

2.4.5. This gave the title compound 56 as a colourless solid with 36% conversion as 

determined by 400 MHz 1H NMR integration of the C17-H protons. Rf 0.34; 1H NMR (400 

MHz, CD3OD):  4.25 (1H, d, J 7.8 Hz, C20-H), 3.93 (1H, d, J 5.5 Hz, C17-H), 3.52 (1H, d, 

J 9.5 Hz, C24-H), 3.45 (1H, t, J 9.1 Hz, C23-H), 3.39 (1H, t, J 8.9 Hz, C22-H), 3.19 (1H, t, J 

8.4 Hz, C21-H), 2.48 (1H, m), 2.37 (1H, m), 2.22 (1H, m), 2.11-1.95 (2H, m), 1.84-0.77 (17H, 

m), 1.07 (3H, s, C19-H3), 0.74 (3H, s, C18-H3); 13C NMR (175 MHz, CD3OD):  215.2 (C3), 

176.7 (C25), 101.8 (C20), 86.1 (C17), 78.0 (C22), 76.7 (C24), 74.9 (C21), 73.8 (C23), 55.1, 

50.5, 48.3, 46.1, 39.9, 39.9, 37.1, 36.9, 33.4, 32.8, 30.1, 30.1, 29.9, 25.8, 22.1, 17.5 (C18), 
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11.8 (C19); LRMS (-ESI): m/z 465 (100%, [C25H37O8]-); HRMS (-ESI): calcd. for [C25H37O8]- 

465.2488, found 465.2500. 

Estrone glucuronide 43 [1]  

The reaction was conducted with estrone (5.0 mg, 19 µmol) as per the general procedure 

2.4.5. This gave the title compound 43 as a colourless solid with 37% conversion as 

determined by 400 MHz 1H NMR integration of the C1-H protons. Rf 0.38; 1H NMR (400 

MHz, CD3OD):  7.19 (1H, d, J 8.5 Hz, C1-H), 6.89 (1H, d, J 8.5 Hz, C2-H), 6.84 (1H, s, C4-

H), 3.72 (1H, d, J 9.0 Hz, C23-H), 3.55-3.47 (3H, m, C22-H, C21-H, and C20-H), 2.88 (2H, 

dd, J 9.2, 4.2 Hz, C6-H2), 2.49 (1H, dd, J 18.3, 8.5 Hz), 2.44-1.29 (12H, m), 0.92 (3H, s, 

C18-H3), C19-H not observed; 13C NMR (150 MHz, CD3OD):  223.8 (C17), 176.5 (C24), 

157.3 (C3), 138.8, 135.0, 127.2, 118.1, 115.7, 102.8 (C19), 77.9 (C21), 76.6 (C23), 74.8 

(C20), 73.7 (C22), 51.7, 45.4, 39.8, 36.8, 32.8, 30.6, 27.7, 27.1, 22.5, 14.3 (C18), one carbon 

peak overlapping or obscured; LRMS (-ESI): m/z 445 (30%, [C24H29O8]-); HRMS (-ESI): m/z 

calcd. for [C24H29O8]- 445.1862, found 445.1857. 

Testosterone glucuronide 19 [1]  

The reaction was conducted with testosterone 46 (5.0 mg, 17 µmol) as per the general 

procedure 2.4.5. This gave the title compound 19 as a colourless solid with 61% conversion 

as determined by 400 MHz 1H NMR integration of the C17-H protons. Rf 0.26; 1H NMR (400 

MHz, CD3OD):  5.71 (1H, s, C4-H), 4.35 (1H, d, J 7.7 Hz, C20-H), 3.82 (1H, t, J 8.6 Hz, 

C17-H), 3.52 (1H, d, J 9.5 Hz, C24-H), 3.43 (1H, t, J 9.1 Hz, C23-H), 3.36 (1H, t, J 8.9 Hz, 

C22-H), 3.20 (1H, t, J 8.4 Hz, C21-H), 2.52-2.44 (2H, m), 2.32-2.27 (2H, m), 2.10-2.02 (3H, 

m), 1.89 (1H, m), 1.75-1.45 (6H, m), 1.36-1.26 (2H, m), 1.24 (3H, s, C19-H3), 1.07-0.87 (3H, 

m), 0.90 (3H, s, C18-H3); 13C NMR (175 MHz, CD3OD):  202.4 (C3), 175.3 (C25), 124.1, 

104.5 (C20), 89.1 (C17), 78.0 (C22), 75.3 (C21), 73.8 (C23), 55.4, 51.7, 44.2, 40.1, 38.5, 

36.8, 36.8, 34.7, 33.9, 32.9, 29.6, 24.2, 21.8, 17.7 (C18), 12.0 (C19), C24 not observed and 

one more carbon overlapping or obscured; LRMS (-ESI): m/z 463 (100%, [C25H35O8]-); 

HRMS (-ESI): calcd. for [C25H35O8]- 463.2332, found 463.2326. 

Androst-4-ene-3β,17β-diol 3-glucuronide 17-propionate 48 

The reaction was conducted with androst-4-ene-3β,17β-diol 17-propionate 55 (derived from 

testosterone propionate 47, 5.0 mg, 15 µmol, a 1:8 ratio of the 3α:3β diastereomers) as per 

the general procedure 2.4.5. This gave the title compound 48 as a colourless solid with a 

42% conversion overall (50% conversion from 3β-diol to the 3-glucuronide, with the 3α-diol 

unreacted) as determined by 400 MHz 1H NMR integration of the C3-H protons. Rf 0.34; 1H 
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NMR (700 MHz, CD3OD):  5.45 (1H, s, C4-H), 4.58 (1H, t, J 8.5 Hz, C17-H), 4.42 (1H, d, J 

7.8 Hz, C20-H), 4.28 (1H, m, C3-H), 3.55 (1H, d, J 9.6 Hz, C24-H), 3.44 (1H, t, J 9.2 Hz, 

C23-H), 3.40 (1H, t, J 9.0 Hz, C22-H), 3.19 (1H, t, J 8.5 Hz, C21-H), 2.34-2.30 (2H, m), 2.23 

(1H, m), 2.14 (1H, m), 2.06-2.04 (2H, m), 1.78-1.72 (3H, m), 1.66 (1H, m), 1.62-1.48 (4H, 

m), 1.40-1.28 (4H, m), 1.16 (1H, m), 1.11 (3H, t, J 7.6 Hz, C28-H3), 1.07 (3H, s, C19-H3), 

0.89 (1H, m), 0.85 (3H, s, C18-H3), 0.77 (1H, m); 13C NMR (175 MHz, CD3OD):  176.8 

(C25), 176.3 (C26), 148.3 (C5), 122.2 (C4), 103.2 (C20), 84.1 (C17), 78.0 (C22), 76.5 (C3), 

76.3 (C24), 75.0 (C21), 73.8 (C23), 56.0, 51.8, 43.8, 38.5, 38.1, 37.1, 36.8, 33.9, 33.2, 28.6, 

28.5, 28.1, 24.5, 21.6, 19.3 (C18), 12.5 (C19), 9.6 (C28); LRMS (-ESI): m/z 521 (100%, 

[C28H41O9]-); HRMS (-ESI): calcd. for [C28H41O9]- 521.2751, found 521.2749. 

Glucuronylation of steroid diol or diol mono-glucuronide 

5α-Androstane-3β,17α-diol bisglucuronide, ammonium salt 5 

The reaction was conducted with 5α-androstane-3β,17α-diol 17-glucuronide 35 (derived 

from 36% conversion of epiDHT 34, assumed 6.1 µmol, a 1:8 ratio of the 3α:3β 

diastereomers) as per the general procedure 2.4.5. This gave the title compound 5 as a 

colourless solid with a 43% conversion overall (53% conversion from 3β-diol mono-

glucuronide to the bis (glucuronide), with the 3α-diol mono-glucuronide unreacted) as 

determined by 400 MHz 1H NMR integration of the C3-H protons. Performing the C18 

purification procedure eluting with methanol:water (25% v/v) as per Section 2.4.3 afforded 

the title compound 5 in pure form. Rf 0.21 (5:2:1 ethyl acetate:methanol:water); 1H NMR 

(700 MHz, CD3OD):  4.41 (1H, d, J 7.8 Hz, C20-H), 4.24 (1H, d, J 7.8 Hz, C26-H), 3.93 

(1H, d, J 5.5 Hz, C17-H), 3.77 (1H, m, C3-H), 3.57 (1H, d, J 9.7 Hz, C24-H), 3.52 (1H, d, J 

9.8 Hz, C30-H), 3.45 (2H, dt, J 15.8, 9.3 Hz, C23-H and C29-H), 3.38 (2H, dt, J 11.1, 9.1 

Hz, C22-H and C28-H), 3.21-3.16 (2H, m, C21-H and C27-H), 1.96 (1H, m), 1.89 (1H, m), 

1.79-1.67 (5H, m), 1.60-1.49 (4H, m), 1.40-1.26 (6H, m), 1.18 (1H, m), 1.09 (1H, m), 1.03-

0.98 (2H, m), 0.84 (3H, s, C18-H3), 0.71 (3H, s, C19-H3), 0.68 (1H, m); 13C NMR (175 MHz, 

CD3OD):  176.4 (C25 or C31), 176.4 (C25 or C31), 101.9 (C26), 101.7 (C20), 86.0 (C17), 

78.7 (C3), 78.0 (C22 or C28), 77.9 (C22 or C28), 76.7 (C24 or C30), 76.4 (C24 or C30), 75.0 

(C21 or C27), 74.9 (C21 or C27), 73.8 (C23 and C29), 55.7, 50.7, 46.1, 45.9, 38.5, 37.3, 

36.8, 36.8, 33.7, 32.8, 30.3, 30.1, 29.8, 25.8, 21.9, 17.5 (C18), 12.8 (C19); LRMS (-ESI): 

m/z 643 (50%, [C31H47O14]-), 467 (10%, [C25H39O8]-), 321 (100%, [C31H46O14]2-); HRMS (-

ESI): calcd. for [C31H47O14]- 643.2966, found 643.2960. 
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Estradiol bisglucuronide, ammonium salt 9 [1]  

Method A: The reaction was conducted with estradiol 3-glucuronide, ammonium salt 41 [1] 

(derived from 37% conversion of estrone, assumed 7.0 µmol) as per the general procedure 

2.4.5. This gave the title compound 9 as a colourless solid with > 98% conversion as 

determined by 400 MHz 1H NMR integration of the C17-H protons. Rf 0.14 (5:2:1 ethyl 

acetate:methanol:water); 1H NMR (400 MHz, CD3OD):  7.18 (1H, d, J 8.6 Hz, C1-H), 6.87 

(1H, dd, J 8.6, 2.6 Hz, C2-H), 6.81 (1H, d, J 2.5 Hz, C4-H), 4.40 (1H, d, J 7.8 Hz, C25-H), 

3.89 (1H, t, J 8.6 Hz, C17-H), 3.73 (1H, d, J 8.8 Hz, C23-H), 3.56 (1H, d, J 9.6 Hz, C29-H), 

3.52-3.36 (5H, m, C22-H, C28-H, C21-H, C27-H, and C20-H), 3.21 (1H, t, J 8.4 Hz, C26-H), 

2.84-2.81 (2H, m, C6-H2), 2.31 (1H, m), 2.20-2.08 (3H, m), 1.88 (1H, m), 1.70 (1H, m), 1.48-

1.20 (7H, m), 0.88 (3H, s, C18-H3), C19-H not observed; 13C NMR (175 MHz, CD3OD):  

157.1 (C3), 139.0, 135.7, 127.2, 118.1, 115.5, 104.6 (C25), 102.8 (C19), 89.5 (C17), 78.0 

(C27), 77.8 (C21), 75.3 (C26), 74.8 (C20), 73.8 (C28), 73.6 (C22), 51.2, 45.4, 44.6, 40.2, 

38.8, 30.7, 29.7, 28.4, 27.6, 24.0, 12.11 (C18), C24, C30, C23, and C29 not observed; 

LRMS (-ESI): m/z 623 (55%, [C30H39O14]-), 447 (60%, [C24H31O8]-), 113 (100%, [C5H5O3]-); 

HRMS (-ESI): calcd. for [C30H39O14]- 623.2340, found 623.2347. 

Method B: The reaction was conducted with estradiol (5.0 mg, 18 µmol) as per the general 

procedure 2.4.5. The reaction was then purified by SPE as per Section 2.4.2 to yield the title 

compound 9 as a colourless solid containing a mixture of the title compound 9, estradiol 17-

glucuronide 42, and estradiol 3-glucuronide 41 in a 2:2:1 ratio as determined by 400 MHz 

1H NMR integration of the C1-H and C17-H protons (no starting steroid diol observed). 

Performing the C18 purification procedure eluting with methanol:water (10% v/v) as per 

Section 2.4.3 afforded the title compound 9 in pure form. 

Androst-4-ene-3β,17β-diol bisglucuronide, ammonium salt 11 

Method A: The reaction was conducted with androst-4-ene-3β,17β-diol 17-glucuronide 45 

(derived from 61% conversion of testosterone 46, assumed 10 µmol, a 1:11 ratio of the 

3α:3β diastereomers) as per the general procedure 2.4.5. This gave the title compound 11 

as a colourless solid with a 60% conversion overall (66% conversion from 3β-diol mono-

glucuronide to the bis(glucuronide), with the 3α-diol mono-glucuronide unreacted) as 

determined by 400 MHz 1H NMR integration of the C3-H protons. Performing the C18 

purification procedure eluting with methanol:water (15% v/v) as per Section 2.4.3 afforded 

the title compound 11 in pure form. Rf 0.19 (5:2:1 ethyl acetate:methanol:water); 1H NMR 

(700 MHz, CD3OD):  5.44 (1H, s, C4-H), 4.43 (1H, d, J 7.8 Hz, C20-H), 4.35 (1H, d, J 7.8 
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Hz, C26-H), 4.26 (1H, m, C3-H), 3.77 (1H, t, J 8.6 Hz, C17-H), 3.59 (1H, d, J 9.7 Hz, C24-

H), 3.55 (1H, d, J 9.8 Hz, C30-H), 3.46-3.42 (2H, m, C23-H and C29-H), 3.39 (1H, t, J 9.0 

Hz, C22-H), 3.36 (1H, t, J 9.0 Hz, C28-H), 3.20-3.18 (2H, m, C21-H and C27-H), 2.21 (1H, 

m), 2.09-2.02 (3H, m), 1.99 (1H, m), 1.77-1.71 (2H, m), 1.67-1.48 (5H, m), 1.39 (1H, m), 

1.31-1.22 (2H, m), 1.19 (1H, m), 1.07 (3H, s, C19-H3), 0.97 (1H, m), 0.88-0.82 (1H, m), 0.86 

(3H, s, C18-H3), 0.75 (1H, m); 13C NMR (150 MHz, CD3OD):  176.3 (C25 or C31), 176.2 

(C25 or C31), 148.6 (C5), 122.1 (C4), 104.7 (C26), 103.3 (C20), 89.7 (C17), 77.9 (C22 or 

C28), 77.9 (C22 or C28), 76.8 (C3), 76.4 (C24 or C30), 76.4 (C24 or C30), 75.3 (C27), 75.0 

(C21), 73.8 (C23 or C29), 73.7 (C23 or C29), 56.1, 52.0, 44.3, 38.7, 38.6, 37.2, 36.8, 33.9, 

33.3, 29.6, 28.1, 24.3, 21.8, 19.3 (C18), 12.0 (C19); LRMS (-ESI): m/z 320 (100%, 

[C31H44O14]2-), 641 (25%, [C31H45O14]-); HRMS (-ESI): calcd. for [C31H45O14]- 641.2809, found 

641.2809. 

Method B: The reaction was conducted with androst-4-ene-3β,17β-diol 3-glucuronide 49 

(derived from 42% conversion of testosterone propionate 47, assumed 6.3 µmol) as per the 

general procedure 2.4.5. This gave the title compound 11 as a colourless solid with 42% 

conversion as determined by 400 MHz 1H NMR integration of the C17-H protons. Performing 

the C18 purification procedure eluting with methanol:water (15% v/v) as per Section 2.4.3 

afforded the title compound 11 in pure form. 

Method C: The reaction was conducted with androst-4-ene-3β,17β-diol 50 [12],[13] (derived 

from testosterone 46, 5.0 mg, 17 µmol, a 1:9 ratio of the 3α:3β diastereomers) as per the 

general procedure 2.4.5. The reaction was then purified by SPE as per Section 2.4.2 to yield 

steroid glucuronides and starting steroid mixture as a colourless solid with a 90% conversion 

overall (> 98% conversion from 3β-diol to either 3- or 17-glucuronide or the bis(glucuronide), 

with the 3α-diol unreacted) as determined by 400 MHz 1H NMR integration of the C3-H 

protons. Performing SPE purification of this mixture as per Section 2.4.1 yielded a colourless 

solid containing a mixture of the title compound 11, androst-4-ene-3β,17β-diol 17-

glucuronide 45, and androst-4-ene-3β,17β-diol 3-glucuronide 49 in a 1:2:4 ratio as 

determined by 400 MHz 1H NMR integration of the C20-H, C26-H, C3-H, and C18-H3 

protons. Performing the C18 purification procedure eluting with methanol:water (25% v/v) 

as per Section 2.4.3 afforded the title compound 11 in pure form. 

Androst-5-ene-3β,17β-diol bisglucuronide, ammonium salt 10 

The reaction was conducted with androst-5-ene-3β,17β-diol (5.0 mg, 17 µmol) as per the 

general procedure 2.4.5. The reaction was then purified by SPE as per Section 2.4.2 to yield 
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the title compound 10 as a colourless solid containing a mixture of the title compound 10 

and androst-5-ene-3β,17β-diol 3-glucuronide in a 1:1 ratio as determined by 400 MHz 1H 

NMR integration of the C20-H and C26-H protons (no starting steroid diol observed). 

Performing the C18 purification procedure eluting with methanol:water (20% v/v) as per 

Section 2.4.3 afforded the title compound 10 in pure form. Rf 0.19 (5:2:1 ethyl 

acetate:methanol:water); 1H NMR (400 MHz, CD3OD):  5.38 (1H, s, C6-H), 4.40 (1H, d, J 

7.8 Hz, C20-H), 4.36 (1H, d, J 7.8 Hz, C26-H), 3.81 (1H, t, J 8.5 Hz, C17-H), 3.65 (1H, m, 

C3-H), 3.58-3.37 (6H, m, C24-H, C30-H, C23-H, C29-H, C22-H, C28-H), 3.21-3.16 (2H, m, 

C21-H and C27-H), 2.43 (1H, m), 2.25 (1H, m), 2.11-1.85 (5H, m), 1.71-1.46 (7H, m), 1.30-

1.20 (2H, m), 1.14-0.93 (3H, m), 1.04 (3H, s, C19-H3), 0.86 (3H, s, C18-H3); 13C NMR (150 

MHz, CD3OD):  175.7 (C25 or C31), 175.6 (C25 or C31), 142.0 (C5), 122.5 (C6), 104.8 

(C26), 102.4 (C20), 89.8 (C17), 79.8 (C3), 77.9 (C22 or C28), 77.8 (C22 or C28), 76.6 (C24 

or C30), 76.5 (C24 or C30), 75.3 (C27), 75.0 (C21), 73.7 (C23 or C29), 73.6 (C23 or C29), 

52.6, 51.8, 44.1, 39.7, 38.7, 38.6, 38.0, 33.2, 32.6, 30.6, 29.7, 24.3, 21.8, 19.9 (C18), 12.0 

(C19); LRMS (-ESI): m/z 320 (100%, [C31H44O14]2-), 641 (50%, [C31H45O14]-); HRMS (-ESI): 

calcd. for [C31H45O14]- 641.2809, found 641.2809. 

19-Norandrost-4-ene-3β,17β-diol bisglucuronide, ammonium salt 12 

The reaction was conducted with 19-norandrost-4-ene-3β,17β-diol 51 [14] (derived from 

nandrolone, 5.0 mg, 18 µmol, a 1:6 ratio of the 3α:3β diastereomers) as per the general 

procedure 2.4.5. The reaction was then purified by SPE as per Section 2.4.2 to yield steroid 

glucuronides and starting steroid mixture as a colourless solid with a 85% conversion overall 

(> 98% conversion from 3β-diol to either 3-glucuronide or the bis(glucuronide), with the 3α-

diol unreacted) as determined by 400 MHz 1H NMR integration of the C4-H protons. 

Performing SPE purification of this mixture as per Section 2.4.1 yielded a colourless solid 

containing a mixture of the title compound 12 and 19-norandrost-4-ene-3β,17β-diol 3-

glucuronide in a 5:1 ratio as determined by 400 MHz 1H NMR integration of the C19-H and 

C25-H protons. Performing the C18 purification procedure eluting with methanol:water (20% 

v/v) as per Section 2.4.3 afforded the title compound 12 in pure form. Rf 0.18 (5:2:1 ethyl 

acetate:methanol:water); 1H NMR (700 MHz, CD3OD):  5.53 (1H, s, C4-H), 4.43 (1H, d, J 

7.8 Hz, C19-H), 4.35 (1H, d, J 7.9 Hz, C25-H), 4.28 (1H, m, C3-H), 3.80 (1H, t, J 8.6 Hz, 

C17-H), 3.57 (1H, d, J 9.6 Hz, C23-H), 3.52 (1H, d, J 9.7 Hz, C29-H), 3.45-3.35 (4H, m, 

C22-H, C28-H, C21-H, C27-H), 3.20-3.17 (2H, m, C20-H and C26-H), 2.26 (1H, m), 2.13 

(1H, m), 2.10-1.97 (4H, m), 1.78-1.71 (3H, m), 1.64 (1H, m), 1.57 (1H, m), 1.41 (1H, m), 

1.28-1.20 (4H, m), 1.10 (1H, m), 1.02 (1H, m), 0.91-0.85 (1H, m), 0.88 (3H, s, C18-H3), 0.60 
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(1H, m); 13C NMR (175 MHz, CD3OD):  176.6 (C24 and C30), 144.1 (C5), 122.9 (C4), 104.6 

(C25), 103.2 (C19), 89.6 (C17), 78.0 (C21 or C27), 77.9 (C21 or C27), 76.5 (C23 or C29), 

76.4 (C23 or C29), 76.2 (C3), 75.3 (C26), 75.0 (C20), 73.8 (C22 or C28), 73.8 (C22 or C28), 

51.9, 51.1, 44.5, 43.3, 42.2, 38.7, 36.2, 32.7, 31.0, 29.6, 27.1, 26.9, 24.1, 12.1 (C18); LRMS 

(-ESI): m/z 313 (5%, [C30H42O14]2-), 627 (100%, [C30H43O14]-); HRMS (-ESI): calcd. for 

[C30H43O14]- 627.2653, found 627.2655. 

5β-Cholane-3α,24-diol bisglucuronide, ammonium salt 13 

The reaction was conducted with 5β-cholane-3α,24-diol (5.0 mg, 14 µmol) as per the general 

procedure 2.4.5. The reaction was then purified by SPE as per Section 2.4.2 to yield a 

colourless solid containing a mixture of the title compound 13 and 5β-cholane-3α,24-diol 24-

glucuronide in a 2:1 ratio as determined by 400 MHz 1H NMR integration of the C25-H and 

C31-H protons (no starting steroid diol observed). Performing the C18 purification procedure 

eluting with methanol:water (50% v/v) as per Section 2.4.3 afforded the title compound 13 

in pure form. Rf 0.23 (5:2:1 ethyl acetate:methanol:water); 1H NMR (400 MHz, CD3OD):  

4.41 (1H, d, J 7.7 Hz, C25-H), 4.25 (1H, d, J 7.7 Hz, C31-H), 3.96 (1H, m, C24-HA), 3.82 

(1H, m, C3-H), 3.55 (2H, d, J 9.3 Hz, C29-H and C35-H), 3.49-3.36 (5H, m, C28-H, C34-H, 

C27-H, C33-H, C24-HB), 3.23-3.17 (2H, m, C26-H and C32-H), 2.02 (1H, m), 1.95-1.79 (5H, 

m), 1.72 (1H, m), 1.65-1.59 (2H, m), 1.55-0.88 (19H, m), 0.96-0.94 (6H, m, C21-H3 and C19-

H3), 0.69 (3H, s, C18-H3); 13C NMR (175 MHz, CD3OD):  176.8 (C30 and C36), 104.3 (C31), 

101.8 (C25), 79.2, 78.0 (C27 or C33), 77.9 (C27 or C33), 76.3 (C29 or C35), 76.2 (C29 or 

C35), 75.0 (C26 or C32), 75.0 (C26 or C32), 73.8 (C28 or C34), 73.8 (C28 or C34), 71.4, 

58.0, 57.8, 43.9, 43.6, 41.9, 41.6, 37.3, 37.0, 36.3, 35.8, 35.2, 33.3, 29.4, 28.3, 27.7, 27.5, 

27.4, 25.3, 23.9, 22.0, 19.1 (C18), 12.5 (C19); LRMS (-ESI): m/z 356 (100%, [C36H56O14]2-), 

713 (30%, [C36H57O14]-); HRMS (-ESI): calcd. for [C36H57O14]- 713.3748, found 713.3749. 

5α-Pregnane-3β,20S-diol bisglucuronide, ammonium salt 14 

The reaction was conducted with 5α-pregnane-3β,20S-diol (5.0 mg, 16 µmol) as per the 

general procedure 2.4.5. The reaction was then purified by SPE as per the general 

procedure 2.4.2 to yield a colourless solid containing a mixture of the title compound 14 and 

5α-pregnane-3β,20S-diol 3-glucuronide in a 1:1 ratio as determined by 400 MHz 1H NMR 

integration of the C22-H and C28-H protons (no starting steroid diol observed). Performing 

the C18 purification procedure eluting with methanol:water (23% v/v) as per Section 2.4.3 

afforded the title compound 14 in pure form. Rf 0.26 (5:2:1 ethyl acetate:methanol:water); 

1H NMR (700 MHz, CD3OD):  4.40 (1H, d, J 7.8 Hz, C22-H), 4.35 (1H, d, J 7.8 Hz, C28-H), 
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3.78 (1H, m, C3-H), 3.64 (1H, m, C20-H), 3.55-3.53 (2H, m, C26-H and C32-H), 3.45-3.42 

(2H, m, C25-H and C31-H), 3.40-3.36 (2H, m, C24-H and C30-H), 3.19-3.16 (2H, m, C23-H 

and C29-H), 2.05 (1H, m), 1.94-1.89 (2H, m), 1.74-1.69 (3H, m), 1.63-1.26 (10H, m), 1.33 

(3H, d, J 6.0 Hz, C21-H3), 1.16-1.09 (3H, m), 1.06-0.99 (2H, m), 0.93 (1H, m), 0.84 (3H, s, 

C18-H3), 0.69 (3H, s, C18-H3), 0.67 (1H, m); 13C NMR (150 MHz, CD3OD):  105.8 (C22), 

101.9 (C28), 82.8 (C20), 78.8 (C3), 78.0 (C24 or C30), 77.9 (C24 or C30), 76.6 (C26 or 

C32), 76.3 (C26 or C32), 75.5 (C29), 75.0 (C23), 73.8 (C25 or C31), 73.7 (C25 or C31), 

59.2, 57.7, 55.9, 46.0, 42.9, 40.5, 38.3, 36.8, 36.7, 35.3, 33.4, 30.3, 30.1, 27.8, 25.2, 23.2, 

22.1, 12.9 (C18), 12.7 (C19), C27 and C33 not observed; LRMS (-ESI): m/z 335 (100%, 

[C33H50O14]2-); HRMS (-ESI): calcd. for [C33H51O14]- 671.3279, found 671.3254. 

Pregn-5-ene-3β,20R-diol bisglucuronide, ammonium salt (20S:20R = 1:5) 16 

The reaction was conducted with pregn-5-ene-3β,20R-diol 52 [15] (5.0 mg, 16 µmol, a 1:6 

ratio of the 20S:20R diastereomers) as per the general procedure 2.4.5. The reaction was 

then purified by SPE as per the general procedure 2.4.2 to yield a colourless solid containing 

a mixture of the title compound 16 and pregn-5-ene-3β,20-diol 20-glucuronide in a 9:1 ratio 

as determined by 400 MHz 1H NMR integration of the C22-H and C28-H protons (no starting 

steroid diol observed). Performing the C18 purification procedure eluting with 

methanol:water (40% v/v) as per Section 2.4.3 afforded the title compound 16 in pure form. 

The 400 MHz 1H NMR integration of the C18-H3 protons showed a 1:5 ratio of the 20S:20R 

diastereomers. 20S:  0.72 (3H, s, C18-H3), 20R:  0.83 (3H, s, C18-H3). Data is reported 

for the major diastereomer where relevant. Rf 0.21 (5:2:1 ethyl acetate:methanol:water); 1H 

NMR (400 MHz, CD3OD):  5.36 (1H, d, J 5.3 Hz, C6-H), 4.40 (1H, d, J 7.8 Hz, C22-H), 4.36 

(1H, d, J 7.7 Hz, C28-H), 3.98 (1H, m, C20-H), 3.63 (1H, m, C3-H), 3.59-3.52 (2H, m, C26-

H and C32-H), 3.45-3.35 (4H, m, C25-H, C31-H, C24-H, C30-H), 3.19 (2H, m, C23-H and 

C29-H), 2.42 (1H, m), 2.31 (1H, m), 2.25 (1H, m), 1.99-1.94 (2H, m), 1.87 (1H, m), 1.69-

1.46 (8H, m), 1.30-0.91 (6H, m), 1.11 (3H, d, J 5.9 Hz, C21-H3), 1.02 (3H, s, C19-H3), 0.83 

(3H, s, C18-H3); 13C NMR (175 MHz, CD3OD):  176.3 (C27 or C33), 175.7 (C27 or C33), 

142.1 (C5), 122.7 (C6), 102.3 (C22), 100.8 (C28), 79.6 (C3), 77.9 (C24 or C30), 77.8 (C24 

or C30), 77.1 (C26 or C32), 76.4 (C26 or C32), 75.7, 75.2, 75.0, 73.7 (C25 or C31), 73.6 

(C25 or C31), 57.9, 57.6, 52.0, 43.6, 40.5, 39.7, 38.6, 38.0, 33.2, 33.2, 30.6, 26.8, 25.5, 

22.2, 19.9 (C18), 18.7, 12.1 (C19); LRMS (-ESI): m/z 334 (100%, [C33H48O14]2-), 669 (5%, 

[C33H49O14]-); HRMS (-ESI): calcd. for [C33H49O14]- 669.3122, found 669.3137. 
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Pregn-5-ene-3β,20S-diol bisglucuronide, ammonium salt (20S:20R = 1:1) 15 

The reaction was conducted with pregn-5-ene-3β,20S-diol 53 (5.0 mg, 16 µmol, a 2:1 ratio 

of the 20S:20R diastereomers) as per the general procedure 2.4.5. The reaction was then 

purified by SPE as per the general procedure 2.4.2 to yield a colourless solid containing a 

mixture of the title compound 15 and pregn-5-ene-3β,20-diol 3-glucuronide in a 4:1 ratio as 

determined by 400 MHz 1H NMR integration of the C22-H and C28-H protons (no starting 

steroid diol observed). Performing the C18 purification procedure eluting with 

methanol:water (40% v/v) as per Section 2.4.3 afforded the title compound 15 in pure form. 

The 400 MHz 1H NMR integration of the C18-H3 protons showed a 1:1 ratio of the 20S:20R 

diastereomers. 20S:  1.34 (3H, d, J 6.1 Hz, C21-H3), 0.72 (3H, s, C18-H3), 20R:  1.10 (3H, 

d, J 6.2 Hz, C21-H3), 0.84 (3H, s, C18-H3); LRMS (-ESI): m/z 334 (100%, [C33H48O14]2-), 669 

(25%, [C33H49O14]-). 

Glucuronylation of steroid diol mono-sulfate 

Androst-5-ene-3β,17β-diol 3-sulfate 17-glucuronide, ammonium salt 24 

The reaction was conducted with androst-5-ene-3β,17β-diol 3-sulfate, ammonium salt 57 

(derived from DHEA 1, 5.5 mg, 19 µmol) as per the general procedure 2.4.5. This gave the 

title compound 24 as a colourless solid with 15% conversion as determined by 400 MHz 1H 

NMR integration of the C17-H protons. Performing the C18 purification procedure eluting 

with methanol:water (23% v/v) as per Section 2.4.3 afforded the title compound 24 in pure 

form. Rf 0.25 (5:2:1 ethyl acetate:methanol:water); 1H NMR (700 MHz, CD3OD):  5.39 (1H, 

d, J 5.1 Hz, C6-H), 4.37 (1H, d, J 7.8 Hz, C20-H), 4.14 (1H, tt, J 11.0, 4.5 Hz, C3-H), 3.78 

(1H, t, J 8.5 Hz, C17-H), 3.59 (1H, d, J 9.4 Hz, C24-H), 3.46 (1H, t, J 9.4 Hz, C23-H), 3.36 

(1H, t, J 9.1 Hz, C22-H), 3.20 (1H, t, J 8.0 Hz, C21-H), 2.54 (1H, ddd, J 13.4, 5.0, 2.3, C16-

H), 2.35 (1H, m, C16-H), 2.08-0.89 (17H, m), 1.04 (3H, s, C19-H3), 0.86 (3H, s, C18-H3); 

13C NMR (175 MHz, CD3OD):  141.7 (C5), 123.1 (C6), 104.9 (C20), 90.0 (C17), 79.8 (C3), 

77.8 (C22), 75.3 (C21), 73.6 (C23), 52.5, 51.7, 44.1, 40.4, 38.6, 38.5, 37.8, 33.1, 32.6, 30.0, 

29.7, 24.3, 21.8, 19.8 (C18), 11.9 (C19), C25 and C24 not observed; LRMS (-ESI): m/z 567 

(15%, [C25H36O11SNa]-), 545 (20%, [C25H37O11S]-), 469 (10%, [C23H33O8S]-), 369 (40%, 

[C19H29O5S]-), 272 (100%, [C25H36O11S]2-); HRMS (-ESI): calcd. for [C25H37O11S]- 545.2057, 

found 545.2055. 

Estradiol 3-sulfate 17-glucuronide, ammonium salt 25 

The reaction was conducted with estradiol 3-sulfate, ammonium salt 44 [2] (derived from 

90% conversion of estrone, assumed 20 µmol) as per the general procedure 2.4.5. This 
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gave the title compound 25 as a colourless solid with 97% conversion as determined by 400 

MHz 1H NMR integration of the C18-H3 protons. Rf 0.25 (5:2:1 ethyl 

acetate:methanol:water); 1H NMR (400 MHz, CD3OD):  7.23 (1H, d, J 8.5 Hz, C1-H), 7.03 

(1H, dd, J 8.5, 2.6 Hz, C2-H), 7.00 (1H, d, J 2.5 Hz, C4-H), 4.41 (1H, d, J 7.8 Hz, C19-H), 

3.88 (1H, t, J 8.6 Hz, C17-H), 3.60 (1H, d, J 9.5 Hz, C23-H), 3.48-3.35 (2H, m, C22-H and 

C21-H), 3.22 (1H, t, J 8.4 Hz, C20-H), 2.86-2.83 (2H, m, C6-H2), 2.34-1.21 (13H, m), 0.89 

(3H, s, C18-H3); 13C NMR (100 MHz, CD3OD):  151.6 (C3), 138.8, 138.1, 127.0, 122.5, 

119.7, 104.7 (C19), 89.6 (C17), 77.9 (C21), 75.3 (C20), 73.8 (C22), 51.2, 45.5, 44.6, 40.1, 

38.8, 30.6, 29.7, 28.3, 27.6, 24.0, 12.1 (C18), C24 and C23 not observed; LRMS (-ESI): m/z 

549 (15%, [C24H30O11SNa]-), 451 (30%, [C22H27O8S]-), 351 (90%, [C18H23O5S]-), 263 (100%, 

[C24H30O11S]2-); HRMS (-ESI): calcd. for [C24H31O11S]- 527.1587, found 527.1588. 

Estradiol 3-glucuronide 17-sulfate, ammonium salt 28 

The reaction was conducted with estradiol 17-sulfate, ammonium salt 72 [2] (derived from 

70% conversion of estradiol, assumed 13 µmol) as per the general procedure 2.4.5. This 

gave the title compound 28 as a colourless solid with 86% conversion as determined by 400 

MHz 1H NMR integration of the C1-H protons. Performing the C18 purification procedure 

eluting with methanol:water (10% v/v) as per Section 2.4.3 afforded the title compound 28 

in pure form. Rf 0.21 (5:2:1 ethyl acetate:methanol:water); 1H NMR (400 MHz, CD3OD):  

7.19 (1H, d, J 8.6 Hz, C1-H), 6.87 (1H, dd, J 8.5, 2.7 Hz, C2-H), 6.81 (1H, d, J 2.6 Hz, C4-

H), 4.85 (1H, C19-H assigned by COSY cross peak analysis), 4.31 (1H, t, J 8.6 Hz, C17-H), 

3.74 (1H, d, J 9.3 Hz), 3.55-3.46 (3H, m), 2.85-2.82 (2H, m, C6-H2), 2.35-1.22 (13H, m), 

0.85 (3H, s, C18-H3); 13C NMR (100 MHz, CD3OD):  157.1 (C3), 138.9, 135.7, 127.2, 118.0, 

115.5, 102.8 (C19), 88.1 (C17), 77.8 (C21), 74.8 (C20), 73.6 (C22), 50.8, 45.4, 44.2, 40.2, 

38.0, 30.7, 29.2, 28.4, 27.4, 24.1, 12.2 (C18), C24 and C23 not observed; LRMS (-ESI): m/z 

549 (20%, [C24H30O11SNa]-), 527 (95%, [C24H31O11S]-), 351 (100%, [C18H23O5S]-), 263 

(20%, [C24H30O11S]2-); HRMS (-ESI): calcd. for [C24H31O11S]- 527.1587, found 527.1591. 

5α-Androstane-3β,17β-diol 3-glucuronide 17-sulfate, ammonium salt 26 

The reaction was conducted with 5α-androstane-3β,17β-diol 17-sulfate, ammonium salt 60 

(derived from DHT, 5.5 mg, 19 µmol, a 1:9 ratio of the 3α:3β diastereomers) as per the 

general procedure 2.4.5. This gave the title compound 26 as a colourless solid with a 83% 

conversion overall (92% conversion from 3β-diol to the 3-glucuronide, with the 3α-diol 

unreacted) as determined by 400 MHz 1H NMR integration of the C3-H protons. Performing 

the C18 purification procedure eluting with methanol:water (25% v/v) as per Section 2.4.3 
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afforded the title compound 26 in pure form. Rf 0.25 (5:2:1 ethyl acetate:methanol:water); 

1H NMR (400 MHz, CD3OD):  4.41 (1H, d, J 7.7 Hz, C20-H), 4.21 (1H, t, J 8.0 Hz, C17-H), 

3.77 (1H, tt, J 10.8, 5.1 Hz, C3-H), 3.56 (1H, d, J 9.2 Hz, C24-H), 3.46-3.35 (2H, m, C23-H 

and C22-H), 3.17 (1H, t, J 8.3 Hz, C21-H), 2.15 (1H, ddt, J 15.0, 9.3, 6.2 Hz), 1.96-0.89 

(20H, m), 0.85 (3H, s, C18-H3), 0.79 (3H, s, C19-H3), 0.68 (1H, dt, J 12.2, 4.3 Hz); 13C NMR 

(175 MHz, CD3OD):  176.1 (C25), 102.1 (C20), 88.2 (C17), 78.9 (C3), 77.9 (C22), 76.4 

(C24), 75.0 (C21), 73.7 (C23), 55.9, 51.9, 46.0, 44.0, 38.3, 38.1, 36.9, 36.8, 35.3, 32.8, 30.3, 

30.0, 29.2, 24.4, 21.8, 12.7 (C18), 12.2 (C19); LRMS (-ESI): m/z 569 (15%, 

[C25H38O11SNa]-), 471 (15%, [C23H35O8S]-), 371 (40%, [C19H31O5S]-), 273 (100%, 

[C25H38O11S]2-); HRMS (-ESI): calcd. for [C25H39O11S]- 547.2213, found 547.2216. 

5α-Androstane-3β,17α-diol 3-glucuronide 17-sulfate, ammonium salt 27 

The reaction was conducted with 5α-androstane-3β,17α-diol 17-sulfate, ammonium salt 62 

(derived from epiDHT 34, 5.0 mg, 17 µmol, a 1:10 ratio of the 3α:3β diastereomers) as per 

the general procedure 2.4.5. This gave the title compound 27 as a colourless solid with a 

62% conversion overall (79% conversion from 3β-diol to the 3-glucuronide, with the 3α-diol 

unreacted) as determined by 400 MHz 1H NMR integration of the C3-H protons. Performing 

the C18 purification procedure eluting with methanol:water (25% v/v) as per Section 2.4.3 

afforded the title compound 27 in pure form. Rf 0.23 (5:2:1 ethyl acetate:methanol:water); 

1H NMR (600 MHz, CD3OD):  4.42 (1H, d, J 7.8 Hz, C20-H), 4.31 (1H, d, J 5.7 Hz, C17-H), 

3.76 (1H, tt, J 9.3, 5.2 Hz, C3-H), 3.59 (1H, d, J 9.3 Hz, C24-H), 3.46-3.36 (2H, m, C23-H 

and C22-H), 3.17 (1H, t, J 8.3 Hz, C21-H), 2.14 (1H, m), 1.94 (1H, m), 1.75-0.66 (20H, m), 

0.85 (3H, s, C18-H3), 0.74 (3H, s, C19-H3); 13C NMR (150 MHz, CD3OD):  102.0 (C20), 

88.0 (C17), 78.9 (C3), 77.9 (C22), 75.0 (C21), 73.8 (C23), 55.6, 50.9, 46.2, 46.0, 38.4, 37.2, 

36.8, 35.3, 33.7, 32.9, 31.2, 30.3, 30.1, 25.6, 21.8, 17.3 (C18), 12.7 (C19), C25 and C24 not 

observed; LRMS (-ESI): m/z 569 (15%, [C25H38O11SNa]-), 547 (60%, [C25H39O11S]-), 471 

(10%, [C23H35O8S]-), 371 (30%, [C19H31O5S]-), 273 (100%, [C25H38O11S]2-); HRMS (-ESI): 

calcd. for [C25H39O11S]- 547.2213, found 547.2210. 

Androst-4-ene-3β,17β-diol 3-glucuronide 17-sulfate, ammonium salt 29 

The reaction was conducted with androst-4-ene-3β,17β-diol 17-sulfate, ammonium salt 64 

(derived from testosterone 46, 5.5 mg, 19 µmol, a 1:13 ratio of the 3α:3β diastereomers) as 

per the general procedure 2.4.5. This gave the title compound 29 as a colourless solid with 

a 80% conversion overall (86% conversion from 3β-diol to the 3-glucuronide, with the 3α-

diol unreacted) as determined by 400 MHz 1H NMR integration of the C3-H protons. 
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Performing the C18 purification procedure eluting with methanol:water (15% v/v) as per 

Section 2.4.3 afforded the title compound 29 in pure form. Rf 0.25 (5:2:1 ethyl 

acetate:methanol:water); 1H NMR (400 MHz, CD3OD):  5.44 (1H, s, C4-H), 4.43 (1H, d, J 

7.8 Hz, C20-H), 4.27 (1H, m, C3-H), 4.21 (1H, t, J 8.5 Hz, C17-H), 3.58 (1H, d, J 9.3 Hz, 

C24-H), 3.46-3.35 (2H, m, C23-H and C22-H), 3.19 (1H, t, J 8.0 Hz, C21-H), 2.26-0.85 (18H, 

m), 1.07 (3H, s, C19-H3), 0.83 (3H, s, C18-H3), 0.76 (1H, dt, J 12.1, 4.1 Hz); 13C NMR (100 

MHz, CD3OD):  148.5 (C5), 122.1 (C4), 103.2 (C20), 88.1 (C17), 77.9 (C22), 76.7, 75.0 

(C21), 73.7 (C23), 56.1, 51.6, 43.9, 38.6, 37.9, 37.2, 36.8, 33.9, 33.2, 29.1, 28.1, 24.4, 21.6, 

19.3 (C18), 12.1 (C19), C25 and C24 not observed; LRMS (-ESI): m/z 567 (20%, 

[C25H36O11SNa]-), 545 (90%, [C25H37O11S]-), 369 (45%, [C19H29O5S]-), 272 (85%, 

[C25H36O11S]2-); HRMS (-ESI): calcd. for [C25H37O11S]- 545.2057, found 545.2059. 

Androst-4-ene-3β,17α-diol 3-glucuronide 17-sulfate, ammonium salt 30 

The reaction was conducted with androst-4-ene-3β,17α-diol 17-sulfate, ammonium salt 66 

(derived from 95% conversion of epiT, assumed 16 µmol, a 1:7 ratio of the 3α:3β 

diastereomers) as per the general procedure 2.4.5. This gave the title compound 30 as a 

colourless solid with a 42% conversion overall (47% conversion from 3β-diol to the 3-

glucuronide, with the 3α-diol unreacted) as determined by 400 MHz 1H NMR integration of 

the C3-H protons. Performing the C18 purification procedure eluting with methanol:water 

(15% v/v) as per Section 2.4.3 afforded the title compound 30 in pure form. Rf 0.25 (5:2:1 

ethyl acetate:methanol:water); 1H NMR (400 MHz, CD3OD):  5.44 (1H, s, C4-H), 4.44 (1H, 

d, J 7.8 Hz, C20-H), 4.32 (1H, d, J 5.7 Hz, C17-H), 4.27 (1H, m, C3-H), 3.59 (1H, d, J 9.3 

Hz, C24-H), 3.47-3.37 (2H, m), 3.19 (1H, t, J 8.2 Hz, C21-H), 2.27-0.74 (19H, m), 1.07 (3H, 

s, C19-H3), 0.77 (3H, s, C18-H3); 13C NMR (150 MHz, CD3OD):  148.6 (C5), 122.1 (C4), 

103.4 (C20), 87.9 (C17), 77.9 (C22), 76.9 (C3), 76. 4 (C24), 75.0 (C21), 73.7 (C23), 55.8, 

50.7, 46.1, 38.6, 37.6, 36.8, 34.7, 33.4, 32.8, 31.2, 28.1, 25.6, 21.6, 19.3 (C18), 17.2 (C19), 

C25 not observed; LRMS (-ESI): m/z 567 (30%, [C25H36O11SNa]-), 545 (40%, [C25H37O11S]-

), 369 (50%, [C19H29O5S]-), 272 (95%, [C25H36O11S]2-); HRMS (-ESI): calcd. for [C25H37O11S]- 

545.2057, found 545.2055. 

Pregn-5-ene-3β,20R-diol 3-sulfate 20-glucuronide, ammonium salt (20S:20R = 1:11) 31 

The reaction was conducted with pregn-5-ene-3β,20R-diol 3-sulfate, ammonium salt 68 

(derived from pregnenolone, 5.0 mg, 16 µmol, a 1:6 ratio of the 20S:20R diastereomers) as 

per the general procedure 2.4.5. This gave the title compound 31 as a colourless solid with 

a 96% conversion as determined by 400 MHz 1H NMR integration of the C18-H3 protons. 
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The 400 MHz 1H NMR integration of the C18-H3 protons showed a 1:11 ratio of the 20S:20R 

diastereomers. 20S =  0.72 (3H, s, C18-H3), 20R =  0.84 (3H, s, C18-H3). Data is reported 

for the major diastereomer where relevant. Rf 0.37 (5:2:1 ethyl acetate:methanol:water); 1H 

NMR (400 MHz, CD3OD):  5.38 (1H, m, C6-H), 4.36 (1H, d, J 7.7 Hz, C22-H), 4.13 (1H, tt, 

J 11.0, 4.8 Hz, C3-H), 3.99 (1H, m, C20-H), 3.52-3.35 (3H, m, C24-H, C25-H, and C26-H), 

3.19 (1H, dd, J 9.0, 7.8 Hz, C23-H), 2.52 (1H, ddd, J 13.3, 5.1, 2.2 Hz), 2.33 (1H, m), 2.07-

0.88 (18H, m), 1.11 (3H, d, J 6.0 Hz, C21-H3), 1.03 (3H, s, C19-H3), 0.84 (3H, s, C18-H3); 

13C NMR (200 MHz, CD3OD):  141.7 (C5), 123.3 (C6), 100.6 (C22), 79.9 (C3), 78.0 (C20), 

75.5, 75.2, 73.8, 57.9, 57.6, 51.9, 43.6, 40.5, 40.4, 38.5, 37.8, 33.2, 33.2, 30.0, 26.8, 25.5, 

22.1, 19.8 (C18), 18.7, 12.1 (C19), C27 and C26 not observed; LRMS (-ESI): m/z 573 (25%, 

[C27H41O11S]-), 497 (10%, [C25H37O8S]-), 397 (30%, [C21H33O5S]-), 286 (100%, 

[C27H40O11S]2-); HRMS (-ESI): calcd. for [C27H41O11S]- 573.2370, found 573.2371. 

Pregn-5-ene-3β,20S-diol 3-sulfate 20-glucuronide, ammonium salt (20S:20R = 2:1) 32 

The reaction was conducted with pregn-5-ene-3β,20S-diol 3-sulfate, ammonium salt 70 

(derived from pregnenolone, 5.0 mg, 16 µmol, a 1:1 ratio of the 20S:20R diastereomers) as 

per the general procedure 2.4.5. This gave the title compound 32 as a colourless solid with 

a 83% conversion as determined by 400 MHz 1H NMR integration of the C18-H3 protons. 

Performing the C18 purification procedure eluting with methanol:water (40% v/v) as per the 

general procedure 2.4.3 afforded the title compound 32 in pure form. The 400 MHz 1H NMR 

integration of the C18-H3 protons showed a 2:1 ratio of the 20S:20R diastereomers. 20S:  

1.34 (3H, d, J 6.1 Hz, C21-H3), 0.72 (3H, s, C18-H3), 20R:  1.11 (3H, d, J 5.8 Hz, C21-H3), 

0.84 (3H, s, C18-H3); Rf 0.37 (5:2:1 ethyl acetate:methanol:water); LRMS (-ESI): m/z 573 

(25%, [C27H41O11S]-), 497 (10%, [C25H37O8S]-), 397 (20%, [C21H33O5S]-), 286 (75%, 

[C27H40O11S]2-), 97 (100%, [HSO4]-). 

Sulfation reaction 

Sulfation of steroid 

EA sulfate, ammonium salt 73 [2]  

The reaction was conducted with EA 22 (5.5 mg, 19 µmol) as per the general procedure 

GP2 to yield the title compound 73 as a colourless solid with > 98% conversion. 1H NMR 

(400 MHz, CD3OD):  4.26 (1H, tt, J 11.3, 5.6 Hz, C3-H), 2.43 (1H, dd, J 19.1, 8.8 Hz, C16-

H), 2.11-0.99 (20H, m), 0.88 (3H, s, C18-H3), 0.87 (3H, s, C19-H3), 0.75 (1H, ddd, J 12.2, 

10.4, 4.1 Hz). The Rf, 1H NMR, 13C NMR, LRMS, and HRMS matched the literature [2].  
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DHEA sulfate, ammonium salt 58 [2]  

The reaction was conducted with DHEA 1 (5.5 mg, 19 µmol) as per the general procedure 

GP2 to yield the title compound 58 as a colourless solid with > 98% conversion. 1H NMR 

(400 MHz, CD3OD):  5.44 (1H, d, J 5.2 Hz, C6-H), 4.14 (1H, tt, J 11.5, 4.8 Hz, C3-H), 2.56 

(1H, ddd, J 13.2, 5.0, 2.3 Hz, C16-H), 2.44 (1H, dd, J 19.2, 8.4 Hz), 2.37 (1H, m, C16-H), 

2.16-1.02 (16H, m), 1.07 (3H, s, C19-H3), 0.90 (3H, s, C18-H3). The Rf, 1H NMR, 13C NMR, 

LRMS, and HRMS matched the literature [2].  

Estrone sulfate, ammonium salt 59 [2]  

The reaction was conducted with estrone (5.9 mg, 22 µmol) as per the general procedure 

GP2 to yield the title compound 59 as a colourless solid with 90% conversion. 1H NMR (400 

MHz, CD3OD):  7.25 (1H, d, J 8.3 Hz, C1-H), 7.06-7.02 (2H, m, C2-H and C4-H), 2.92-2.89 

(2H, m, C6-H2), 2.50 (1H, dd, J 18.4, 8.5 Hz), 2.45-1.40 (12H, m), 0.93 (3H, s, C18-H3). The 

Rf, 1H NMR, 13C NMR, LRMS, and HRMS matched the literature [2]. 

Estradiol 17-sulfate, ammonium salt 72 [2]  

The reaction was conducted according to the literature with minor modification [2]. A solution 

of estradiol (5.0 mg, 18 µmol) in DMF (200 µL) was treated with a solution of sulfur trioxide-

pyridine complex (15 mg, 94 µmol, 5.2 equiv.), stirred for 21 h, and purified by SPE as per 

the general procedure GP2 to yield the title compound 72 as a colourless solid with 70% 

conversion. 1H NMR (400 MHz, CD3OD):  7.08 (1H, d, J 8.4 Hz, C1-H), 6.53 (1H, dd, J 8.4, 

2.7 Hz, C2-H), 6.47 (1H, d, J 2.5 Hz, C4-H), 4.31 (1H, t, J 8.6 Hz, C17-H), 2.78-2.74 (2H, m, 

C6-H2), 2.29-1.17 (13H, m), 0.83 (3H, s, C18-H3). The Rf, 1H NMR, 13C NMR, LRMS, and 

HRMS matched the literature [2].  

DHT sulfate, ammonium salt 61 [2]  

The reaction was conducted with DHT (5.5 mg, 19 µmol) as per the general procedure GP2 

to yield the title compound 61 as a colourless solid with > 98% conversion. 1H NMR (400 

MHz, CD3OD):  4.22 (1H, t, J 8.7 Hz, C17-H), 2.49 (1H, dt, J 14.8, 6.7 Hz), 2.37 (1H, t, J 

14.4 Hz), 2.25-0.76 (20H, m), 1.07 (3H, s, C19-H3), 0.83 (3H, s, C18-H3). The Rf, 1H NMR, 

13C NMR, LRMS, and HRMS matched the literature [2].  

EpiDHT sulfate, ammonium salt 63 

The reaction was conducted with epiDHT (5.0 mg, 17 µmol) as per the general procedure 

GP2 to yield the title compound 63 as a colourless solid with > 98% conversion. Rf 0.47; 1H 

NMR (400 MHz, CD3OD):  4.33 (1H, d, J 5.8 Hz, C17-H), 2.49 (1H, dt, J 14.7, 6.7 Hz), 2.37 
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(1H, t, J 14.4 Hz), 2.25-0.74 (20H, m), 1.07 (3H, s, C19-H3), 0.77 (3H, s, C18-H3); 13C NMR 

(100 MHz, CD3OD):  214.8 (C3), 87.9 (C17), 55.0, 50.8, 48.1, 46.2, 45.5, 39.8, 38.9, 37.0, 

36.9, 33.3, 32.9, 31.2, 30.1, 25.6, 22.0, 17.3 (C18), 11.7 (C19); LRMS (-ESI): m/z 369 

(100%, [C19H29O5S]-), 97 (20%, [HSO4]-); HRMS (-ESI): calcd. for [C19H29O5S]- 369.1736, 

found 369.1741. 

Testosterone sulfate, ammonium salt 65 [2]  

The reaction was conducted with testosterone 46 (5.5 mg, 19 µmol) as per the general 

procedure GP2 to yield the title compound 65 as a colourless solid with > 98% conversion. 

1H NMR (400 MHz, CD3OD):  5.71 (1H, s, C4-H), 4.23 (1H, t, J 8.5 Hz, C17-H), 2.54-0.95 

(19H, m), 1.24 (3H, s, C19-H3), 0.87 (3H, s, C18-H3). The Rf, 1H NMR, 13C NMR, LRMS, 

and HRMS matched the literature [2].  

EpiT sulfate, ammonium salt 67 [2]  

The reaction was conducted with epiT (5.0 mg, 17 µmol) as per the general procedure GP2 

to yield the title compound 67 as a colourless solid with 95% conversion. 1H NMR (400 MHz, 

CD3OD):  5.71 (1H, s, C4-H), 4.34 (1H, d, J 5.8 Hz, C17-H), 2.53-0.96 (19H, m), 1.24 (3H, 

s, C19-H3), 0.81 (3H, s, C18-H3). The Rf, 1H NMR, 13C NMR, LRMS, and HRMS matched 

the literature [2].  

Pregnenolone sulfate, ammonium salt 69 

The reaction was conducted with pregnenolone (5.0 mg, 16 µmol) as per the general 

procedure GP2 to yield the title compound 69 as a colourless solid with > 98% conversion. 

Rf 0.55; 1H NMR (400 MHz, CD3OD):  5.40 (1H, m, C6-H), 4.14 (1H, tt, J 11.4, 4.7 Hz, C3-

H), 2.65 (1H, t, J 8.9 Hz), 2.54 (1H, ddd, J 13.2, 5.1, 2.3 Hz), 2.35 (1H, m), 2.18-1.01 (17H, 

m), 2.13 (3H, s, C21-H3), 1.04 (3H, s, C19-H3), 0.63 (3H, s, C18-H3); 13C NMR (100 MHz, 

CD3OD):  212.4 (C20), 141.6 (C5), 123.1 (C6), 79.7 (C3), 64.7, 58.1, 51.5, 45.1, 40.4, 39.9, 

38.5, 37.7, 33.2, 32.9, 31.7, 30.0, 25.5, 23.8, 22.2, 19.7 (C18), 13.6 (C19); LRMS (-ESI): 

m/z 395 (100%, [C21H31O5S]-), 97 (35%, [HSO4]-); HRMS (-ESI): calcd. for [C21H31O5S]- 

395.1892, found 395.1893. 

Hydrolysis reaction 

PaS enzyme hydrolysis reaction 

Estradiol 17-glucuronide 42 [1] 

A solution of estradiol 3-sulfate 17-glucuronide, ammonium salt 25 (1.0 mg, 1.8 µmol) in 

MilliQ water (450 µL) was added to a falcon tube containing MilliQ water (9 mL), Tris-HCl 
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buffer (500 µL, 1 M, pH 8.2), and PaS wild type enzyme (50 µL, 60 mg mL-1) [4] and left to 

stand at room temperature for 3 h. The reaction was then adjusted to pH 7 (universal 

indicator strips) by the addition of aqueous acetic acid (500 µL, 1 M) and purified by SPE as 

per Section 2.4.2 to yield the title compound 42 as a colourless solid with a > 98% 

conversion. Rf 0.33; 1H NMR (400 MHz, CD3OD):  7.07 (1H, d, J 8.5 Hz, C1-H), 6.53 (1H, 

dd, J 8.8, 2.3 Hz, C2-H), 6.47 (1H, s, C4-H), 4.40 (1H, d, J 7.8 Hz, C19-H), 3.90 (1H, t, J 8.7 

Hz, C17-H), 3.55 (1H, d, J 9.3 Hz, C23-H), 3.47-3.36 (2H, m, C22-H and C21-H), 3.21 (1H, 

t, J 8.0 Hz, C20-H), 2.79-2.75 (2H, m, C6-H2), 2.28 (1H, m), 2.19-2.10 (3H, m), 1.87 (1H, 

m), 1.68 (1H, m), 1.47-1.21 (7H, m), 0.89 (3H, s, C18-H3); 13C NMR (175 MHz, CD3OD):  

176.2 (C24), 155.9 (C3), 138.8, 132.7, 127.2, 116.0, 113.7, 104.6 (C19), 89.5 (C17), 77.9 

(C21), 75.3 (C20), 73.8 (C22), 51.2, 45.3, 44.6, 40.4, 38.9, 30.7, 29.7, 28.5, 27.7, 24.0, 12.1 

(C18), C23 not observed; LRMS (-ESI): m/z 447 (45%, [C24H31O8]-); HRMS (-ESI): m/z 

calcd. for [C24H31O8]- 447.2019, found 447.2020. 

Base hydrolysis reaction 

Androst-4-ene-3β,17β-diol 3-glucuronide 49 

A solution of androst-4-ene-3β,17β-diol 3-glucuronide 17-propionate 48 (derived from 42% 

conversion of testosterone propionate 47, assumed 6.3 µmol) in methanol (200 µL) was 

treated with 5 M aqueous sodium hydroxide (20 µL, 0.10 mmol, 16 equiv.), and stirred for 3 

h at room temperature. The reaction mixture was then quenched with water (3 mL) and 

purified by SPE as per Section 2.4.2 to yield the title compound 49 as a colourless solid with 

> 98% conversion. Rf 0.32; 1H NMR (700 MHz, CD3OD):  5.44 (1H, s, C4-H), 4.42 (1H, d, 

J 7.7 Hz, C20-H), 4.27 (1H, m, C3-H), 3.60-3.54 (2H, m, C17-H and C24-H), 3.47-3.37 (2H, 

m, C23-H and C22-H), 3.19 (1H, t, J 8.3 Hz, C21-H), 2.22 (1H, m), 2.06-2.00 (2H, m), 1.96 

(1H, m), 1.84 (1H, m), 1.75 (1H, m), 1.63-1.22 (9H, m), 1.07 (3H, s, C19-H3), 1.04-0.71 (4H, 

m), 0.75 (3H, s, C18-H3); 13C NMR (175 MHz, CD3OD):  148.5 (C5), 122.1 (C4), 103.3 

(C20), 82.4 (C17), 78.0 (C22), 76.6 (C3), 75.0 (C21), 73.7 (C23), 56.2, 52.1, 44.0, 38.6, 

38.0, 37.4, 36.8, 34.0, 33.3, 30.6, 28.1, 24.3, 21.7, 19.3 (C18), 11.6 (C19), C25 and C24 not 

observed; LRMS (-ESI): m/z 465 (100%, [C25H37O8]-); HRMS (-ESI): calcd. for [C25H37O8]- 

465.2488, found 465.2487. 
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Tosylhydrazone reaction 

Tosylhydrazone of steroid 

Pregnenolone tosylhydrazone 54 

The reaction was conducted according to literature method with minor modifications [18]. 

Pregnenolone (5.0 mg, 16 µmol) was dissolved in DMF (150 µL). para-Toluenesulfonyl 

hydrazide (6.0 mg, 32 µmol, 2 equiv.) was then added to the solution. The reaction mixture 

was stirred for 16 h at room temperature. The solution was then quenched with water (5 mL) 

and subjected to purification by WAX SPE as per Section 2.4.1 but with different eluting 

solutions: 0.1 M aqueous sodium hydroxide (15 mL), water (15 mL), and methanol (15 mL). 

The methanol fraction was concentrated in vacuo to yield the title compound 54 as a 

colourless solid with > 98% conversion. Rf 0.23 (1:1 ethyl acetate:n-hexane); 1H NMR (400 

MHz, CD3OD):  7.80 (2H, d, J 8.4 Hz), 7.35 (2H, d, J 7.8 Hz), 5.33 (1H, d, J 5.5 Hz, C6-H), 

3.39 (1H, m, C3-H), 2.42 (3H, s), 2.25-2.14 (4H, m), 1.97 (1H, m), 1.87-0.91 (15H, m), 1.78 

(3H, s), 0.99 (3H, s), 0.30 (3H, s); 13C NMR (100 MHz, CD3OD):  159.9, 145.0, 142.2 (C5), 

137.5, 130.2 (2C), 129.3 (2C), 122.3 (C6), 72.4 (C3), 60.0, 57.7, 51.7, 44.9, 43.0, 39.9, 38.5, 

37.7, 33.4, 32.9, 32.3, 25.3, 24.2, 22.1, 21.5, 21.5, 19.8 (C18), 13.2 (C19); LRMS (+ESI): 

m/z 485 (100%, [C28H41N2O3S]+); HRMS (+ESI): calcd. for [C28H41N2O3S]+ 485.2838, found 

485.2834. 

Tosylhydrazone of steroid mono-sulfate 

Pregnenolone tosylhydrazone 3-sulfate, ammonium salt 71 

The reaction was conducted according to literature method with minor modifications [18]. 

Pregnenolone 3-sulfate, pyridinium salt (5.0 mg, 11 µmol) was dissolved in DMF (105 µL). 

para-Toluenesulfonyl hydrazide (3.9 mg, 21 mol, 2 equiv.) was then added to the solution. 

The reaction mixture was stirred for 16 h at room temperature. The solution was then 

quenched with water (5 mL) and subjected to purification by SPE as per general procedure 

2.4.1 but with different eluting solutions: 0.1 M aqueous sodium hydroxide (15 mL), water 

(15 mL), methanol (15 mL), and saturated aqueous ammonia solution in methanol (5% v/v, 

15 mL). The methanolic ammonia fraction was concentrated in vacuo to yield the title 

compound 71 as a colourless solid with > 98% conversion. Rf 0.50; 1H NMR (400 MHz, 

CD3OD):  7.80 (2H, d, J 8.3 Hz), 7.35 (2H, d, J 8.0 Hz), 5.38 (1H, m, C6-H), 4.12 (1H, tt, J 

11.5, 4.7 Hz, C3-H), 2.53 (1H, ddd, J 13.3, 5.0, 2.3 Hz), 2.42 (3H, s), 2.37-0.93 (19H, m), 

1.78 (3H, s), 1.00 (3H, s), 0.29 (3H, s); 13C NMR (100 MHz, CD3OD):  159.9, 145.0, 141.6 

(C5), 137.5, 130.2 (2C), 129.3 (2C), 123.1 (C6), 79.8 (C3), 60.0, 57.6, 51.6, 44.9, 40.4, 39.9, 

38.5, 37.7, 33.3, 32.9, 30.0, 25.2, 24.2, 22.1, 21.5, 19.7 (C18), 18.2, 13.2 (C19); LRMS (-
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ESI): m/z 563 (100%, [C28H39N2O6S2]-), 395 (15%, [C21H31O5S]-), 97 (10%, [HSO4]-); HRMS 

(-ESI): calcd. for [C28H39N2O6S2]- 563.2250, found 563.2248. 

Labelled fluoro sugar synthesis 

Synthesised 18O labelled fluoro sugar 

{18O}-α-D-Glucuronyl fluoride, ammonium salt {18O}-2 

Acetonitrile (110 µL) and sodium bicarbonate buffer (ci = 1.0 M, 110 µL, cf = 0.5 M, pH 9; 

prepared in D2
18O) was added to vacuum-dried α-D-glucopyranosyl fluoride {18O}-36 (10 

mg, 0.055 mmol), BAIB (39 mg, 0.12 mmol) and TEMPO (1.7 mg, 0.011 mmol). The reaction 

mixture was stirred, initially on ice which was allowed to warm to room temperature. After 

24 h, the reaction was diluted with water (500 µL) and then washed with chloroform (3 x 500 

µL). The aqueous layer was then collected and concentrated under reduced pressure giving 

a crude colourless solid with a > 98% conversion as determined by 400 MHz 1H NMR 

integration of the C1-H protons. The crude was then subjected to anion exchange column 

chromatography (Dowex®, 1x8, 200-400 mesh, HCO3
- form). The column was eluted with 

milliQ water (4 column volumes) then 50 mM ammonium bicarbonate (2 column volumes), 

followed by 0.1 M ammonium bicarbonate (6 column volumes), then by 0.2 M ammonium 

bicarbonate until complete elution of the target compound as indicated by TLC. Appropriate 

fractions were combined and concentrated under reduced pressure to afford the title 

compound {18O}-2 as a colourless solid (7.6 mg, 0.035 mmol, 64%). Rf 0.40 (5:2:1 

EtOAc:MeOH:H2O); 1H NMR (400 MHz, D2O):  5.70 (1H, dd, JH1-F 53.4, JH1-H2 2.8 Hz, C1-

H), 4.08 (1H, d, JH4-H5 10.1 Hz, C5-H), 3.76 (1H, t, JH3-H4 ≈ JH2-H3 9.2 Hz, C3-H), 3.66 (1H, 

ddd, JH2-F 26.0, JH2-H3 9.8, JH1-H2 2.8 Hz, C2-H), 3.57 (1H, t, JH4-H5 ≈ JH3-H4 9.4 Hz, C4-H); 

LRMS (-ESI): m/z 199 (25%, [C6H8O4[18O2]F]-), 197 (13%, [C6H8O5[18O1]F]-), 179 (15%, 

[C6H7O4[18O2]]-), 177 (10%, [C6H7O5[18O1]]-); HRMS (-ESI): m/z calcd. for [C6H8O4[18O2]F]- 

199.0390, found 199.0390. Spectroscopic data was found to be consistent with the literature 

for the unlabelled compound [9].  

Synthesised 13C labelled fluoro sugar 

1,2,3,4,6-Penta-O-acetyl-{13C6}-β-D-glucopyranoside {13C6}-74 

Acetic anhydride (10 mL, 0.11 mol) was added to sodium acetate (0.16 g, 20 mmol), and an 

anomeric mixture of {13C6}-D-glucose (1.00 g, 5.38 mmol) and stirred at 100 oC. The reaction 

mixture was then stirred for 2 h, at which time a further aliquot of acetic anhydride (5.0 mL, 

53 mmol) was added. The reaction was then left for a further 2 h, where full consumption of 

the starting material was observed by TLC. Upon cooling the reaction was diluted with 
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dichloromethane (20 mL), and poured into a stirring solution of aqueous sodium thiosulfate 

(30 mL, 10% w/v) cooled on ice. The organic layer was then extracted and washed with 

saturated sodium bicarbonate solution (3 x 20 mL). The organic layer was then dried with 

anhydrous MgSO4 and concentrated under reduced pressure, giving the crude product as a 

mixture of anomers. Recrystallisation from methanol (10 mL per gram of crude solid) gave 

the title compound {13C6}-74 as a colourless solid (1.04 g, 2.48 mmol, 46%). The 400 MHz 

1H NMR integration of the C1-H protons showed 1:33 ratio of the α:β anomers. Data is 

reported for the major anomer where relevant. Rf 0.30 (9:1 CHCl3:EtOH); mp: 128-130 ºC 

(lit.[19],[20] 130-131 ºC); [α]23
D +5.5 (c 0.8, CHCl3) [lit.[19] [α]23

D +4.5 (c 4.6, CHCl3)]; IR 

(ATR): 2945 (C-H), 1752 (C=O), 1434, 1374, 1215, 1031, 975, 906 cm-1; 1H NMR (400 MHz, 

CDCl3):  5.71 (1H, dd, 1JH1-C1 167.0 Hz, 3JH1-H2 8.3 Hz, C1-H), 5.39-4.97 (3H, m, C2-H, C3-

H, C4-H), 4.43-3.97 (2H, m, C6-Ha and C6-Hb), 3.82 (1H, m, C5-H), 2.11 (3H, s), 2.08 (3H, 

s), 2.03-2.02 (6H, m), 2.01 (3H, s); 13C NMR (100 MHz, CDCl3):  170.6 (C=O), 170.1 (C=O), 

169.4 (C=O), 169.3 (C=O), 169.0 (C=O), 91.7 (dt, 1JC1-C2 48.2 Hz, 2JC1-C3 ≈ 3JC1-C4 5.0 Hz, 

C1), 73.8-72.0 (2C, m, C3 and C4), 70.3 (ddd, 1JC1-C2 48.2 Hz, 1JC2-C3 40.8 Hz, 2JC2-C4 3.5 

Hz, C2), 67.8 (td, 1JC5-C6 ≈ 1JC4-C5 41.6 Hz, 2JC3-C5 3.5 Hz, C5), 61.5 (dt, 1JC5-C6 44.8 Hz, 2JC4-

C6 ≈ 3JC3-C6 4.2 Hz, C6), 20.9 (CH3), 20.7 (CH3), 20.6 (3xCH3); LRMS (+ESI): m/z 419 (100%, 

[{13C6}C10H22O11Na]+); HRMS (+ESI) m/z calcd. for [{13C6}C10H22O11Na]+ 419.1261, found 

419.1260. Spectroscopic data was found to be consistent with the literature for the 

unlabelled compound [19]. 

2,3,4,6-Tetra-O-acetyl-{13C6}-α-D-glucopyranosyl fluoride {13C6}-75 

Hydrogen fluoride-pyridine (70%, 3 mL) was added to 1,2,3,4,6-penta-O-acetyl-{13C6}-β-D-

glucopyranoside {13C6}-74 (1.00 g, 2.39 mmol) dissolved in dry dichloromethane, under 

nitrogen at room temperature. The reaction was stirred for 6 h, then poured into a solution 

of diethyl ether (5 mL) and quenched with aqueous potassium fluoride (17 mL, 10% w/v). 

The organic layer was collected, and aqueous layer was washed with ether:hexane 3:1 (3 x 

20 mL). The organic layers were combined and washed with aqueous potassium fluoride (3 

x 20 mL, 10% w/v), saturated aqueous sodium bicarbonate (20 mL) and then brine (20 mL). 

The organic layer was dried over anhydrous MgSO4, and then concentrated under reduced 

pressure at 30 oC. The resulting crude oil was purified by column chromatography (silica, 

9:1 CH3Cl:EtOAc), which afforded the title compound {13C6}-75 as a colourless solid (752 

mg, 1.98 mmol, 83%). Rf 0.50 (9:1 CHCl3:EtOH); mp: 104-106 ºC (lit.[20] 108 ºC); [α]26
D 

+65.0 (c 0.26, CHCl3) [lit.[20] [α]20
D +90.1 (c 3, CHCl3)]; IR (ATR): 2951 (C-H), 1748 (C=O), 

1343, 1373, 1215, 1139, 1031, 914, 760 cm-1; 1H NMR (400 MHz,CDCl3):  5.95-5.32 (2H, 
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m, C1-H and C4-H), 5.28-4.77 (2H, m, C2-H and C3-H), 4.42-3.97 (3H, m, C5-H and C6-

H2), 2.10 (3H, s), 2.10 (3H, s), 2.04 (3H, s), 2.02 (3H, s); 13C NMR (100 MHz, CDCl3):  

170.7 (C=O), 170.1 (2xC=O), 169.6 (C=O), 103.7 (m, C1), 71.2-68.9 (3C, m, C2, C3, C4), 

67.5 (m, C5), 61.3 (dt, 1JC5-C6 44.5 Hz, 2JC4-C6 ≈ 3JC3-C6 3.6 Hz, C6), 20.8 (CH3), 20.8 (CH3), 

20.7 (2xCH3); LRMS (+ESI): m/z 379 (100%, [{13C6}C8H19O9FNa]+); HRMS (+ESI): m/z 

calcd. for [{13C6}C8H19O9FNa]+ 379.1112, found 379.1116. Spectroscopic data was found to 

be consistent with the literature for the unlabelled compound [21]. 

{13C6}-α-D-Glucopyranosyl fluoride {13C6}-36 

Sodium methoxide (1 mL, 0.1 mM, in MeOH) was added dropwise to a solution of 2,3,4,6-

tetra-O-acetyl-{13C6}-α-D-glucopyranosyl fluoride {13C6}-75 (714 mg, 1.88 mmol) dissolved 

in dry methanol (7.5 mL), on ice, under a nitrogen atmosphere. The reaction was stored in 

a 4 oC fridge for 18 h, then quenched with silica (1 g) and concentrated under reduced 

pressure. The crude was subjected to column chromatography (silica, 5:2 EtOAc:EtOH), 

which afforded the title compound {13C6}-36 as a colourless solid (318 mg, 1.51 mmol, 80%). 

Rf 0.45 (7:2:1 EtOAc:MeOH:H2O); mp: 110-115 ºC (lit.[22] 112-119 ºC); [α]27
D +79.8 (c 0.15, 

H2O) [lit.[22] [α]24
D +97.6 (c 1.5, H2O)]; IR (ATR): 3376 (br, O-H), 2975 (C-H), 1455, 1357, 

1145, 1066, 996, 877, 758 cm-1; 1H NMR (400 MHz, D2O):  5.61 (1H, m, C1-H), 4.11-3.28 

(6H, m);13C NMR (100 MHz, D2O):  107.3 (ddt, 1JC1-F 222.5 Hz, 1JC1-C2 45.0 Hz, 2JC1-C3 ≈ 

3JC1-C4 2.9 Hz, C1), 75.4-70.3 (3C, m, C2, C3, C4), 68.5 (m, C5), 60.1 ( dt, 1JC6-C5 43.2 Hz, 

2JC6-C4 ≈ 3JC6-C3 3.5 Hz, C6); LRMS (+ESI): m/z 211 (100%, [{13C6}H11O5FNa]+); HRMS 

(+ESI): m/z calcd. for [{13C6}H11O5FNa]+ 211.0690, found 211.0692. Spectroscopic data was 

found to be consistent with the literature for the unlabelled compound [22]. 

{13C6}-α-D-Glucuronyl fluoride, ammonium salt {13C6}-2 

Acetonitrile (0.6 mL) and sodium bicarbonate buffer (ci = 1.0 M, 0.6 mL, cf = 0.5 M, pH 9) 

was added to {13C6}-α-D-glucopyranosyl fluoride {13C6}-36 (50 mg, 0.24 mmol), BAIB (200 

mg, 0.62 mmol) and TEMPO (7.5 mg, 48 µmol). The reaction mixture was stirred, initially on 

ice which was allowed to warm to room temperature. After 24 h, the reaction was diluted 

with water (5 mL) and then washed with chloroform (3 x 5 mL). The aqueous layer was then 

collected and then concentrated under reduced pressure giving a crude colourless solid. 

The crude was then subjected to anion exchange column chromatography (Dowex®, 1x8, 

200-400 mesh, HCO3
- form). The column was eluted with milliQ water (4 column volumes) 

then 50 mM ammonium bicarbonate (2 column volumes), followed by 0.1 M ammonium 

bicarbonate (6 column volumes), then by 0.2 M ammonium bicarbonate until complete 
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elution of the target compound as indicated by TLC. Appropriate fractions were combined 

and concentrated under reduced pressure to afford the title compound {13C6}-2 as a 

translucent colourless solid (38.3 mg, 0.19 mmol, 79%). Rf 0.44 (5:2:1 EtOAc:MeOH:H2O); 

mp: 115-120 ºC (lit.[6] 112-119 ºC); [α]27
D +7.0 (c 0.2, H2O) [lit.[9] [α]24

D +46.6 (c 1.1, H2O)]; 

IR (ATR): 3200 (O-H), 2922 (C-H), 1538 (CO2
-), 1402 (CO2

-), 1276, 1139, 1011, 653 cm-1; 

1H NMR (400 MHz, D2O):  6.72 (1H, m, C1-H), 4.27 (1H, m, C4-H), 3.99-3.29 (3H, m); 13C 

NMR (100 MHz, D2O):  175.5 (dt, 1JC5-C6 59.3 Hz, 2JC4-C6 ≈ 3JC3-C6 4.1 Hz, C6), 106.9 (m, 

C1), 106.9 (4C, m, C2, C3, C4, C5); LRMS (-ESI): m/z 201 (100%, [{13C6}H8O6F]-); HRMS 

(-ESI): m/z calcd. for [{13C6}H8O6F]- 201.0509, found 201.0506. Spectroscopic data was 

found to be consistent with the literature for the unlabelled compound [9].  

Labelled steroid mono-glucuronides synthesis 

Synthesised 18O labelled steroid mono-glucuronides 

EA {18O}-glucuronide, ammonium salt {18O}-17 

The reaction was conducted with EA 22 (1.0 mg, 3.4 µmol) and {18O}-α-D-glucuronyl fluoride 

{18O}-2 as per the general procedure 2.4.5. This gave the title compound {18O}-17 as a 

colourless solid with > 98% conversion as determined by 400 MHz 1H NMR integration of 

the C3-H protons. 1H NMR (400 MHz, CD3OD):  4.41 (1H, d, J 7.9 Hz, C20-H), 3.77 (1H, 

m, C3-H), 3.56 (1H, d, J 9.1 Hz, C24-H), 3.46 (1H, t, J 9.3 Hz, C23-H), 3.38 (1H, t, J 9.0 Hz, 

C22-H), 3.18 (1H, t, J 8.2 Hz, C21-H), 2.42 (1H, dd, J 19.1, 8.8 Hz, C16-H), 2.06 (1H, dt, J 

18.7, 8.9 Hz, C16-H), 1.99-0.98 (19H, m), 0.88 (3H, s, C18-H3), 0.87 (3H, s, C19-H3), 0.74 

(1H, m); LRMS (-ESI): m/z 469 (100%, [C25H37O6{18O2}]-), 467 (60%, [C25H37O7{18O1}]-); 

HRMS (-ESI): m/z calcd. for [C25H37O6{18O2}]- 469.2573, found 469.2573. Spectroscopic 

data was found to be consistent with the literature for the unlabelled compound [1].  

Synthesised 13C labelled steroid mono-glucuronides 

Testosterone {13C6}-glucuronide, ammonium salt {13C6}-19 

The reaction was conducted with testosterone 46 (5.0 mg, 17 µmol) and {13C6}-α-D-

glucuronyl fluoride {13C6}-2 by general procedure 2.4.5. This gave the title compound {13C6}-

19 as a colourless solid with 41% conversion as determined by 400 MHz 1H NMR integration 

of the C17-H protons. 1H NMR (400 MHz, CD3OD):  5.71 (1H, s, C4-H), 4.35 (1H, dd, 1JH20-

C20 158.3 Hz, 3JH20-H21 7.7 Hz, C20-H), 3.83 (1H, m), 3.58 (1H, m), 3.35 (1H, m), 3.27-2.97 

(2H, m), 2.55-2.41 (2H, m), 2.34-2.24 (2H, m), 2.17-1.99 (3H, m), 1.89 (1H, m), 1.78-1.44 

(6H, m), 1.37-1.25 (2H, m), 1.24 (3H, s, C18-H3), 1.09-0.92 (3H, m), 0.90 (3H, s, C19-H3); 

13C NMR (175 MHz, CD3OD):  202.4 (C=O), 176.6 (dt, 1JC24-C25 58.8 Hz, 2JC23-C25 ≈ 3JC22-
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C25 4.9 Hz, C25), 104.5 (dt, 1JC20-C21 47.1 Hz, 2JC20-C22 ≈ 3JC20-C23 4.9 Hz, C20), 89.2 (C17), 

79.0-71.9 (4C, m, C21, C22, C23, C24), 69.0, 55.4, 51.7, 44.2, 40.0, 38.5, 36.8, 34.7, 33.9, 

32.8, 31.4, 29.6, 24.2, 21.8,17.7 (C18), 12.0 (C19), one peak overlapping or obscured; 

LRMS (-ESI): m/z 469 (100%, [C19{13C6}H35O8]-); HRMS (-ESI): m/z calcd. for 

[C19{13C6}H35O8]- 469.2533, found 469.2530. Spectroscopic data was found to be consistent 

with the unlabelled compound [1].  

EpiT {13C6}-glucuronide, ammonium salt {13C6}-20 

The reaction was conducted with epiT (5.0 mg, 17 µmol) and {13C6}-α-D-glucuronyl fluoride 

{13C6}-2 as per the general procedure 2.4.5. This gave the title compound {13C6}-20 as a 

colourless solid with 6% conversion as determined by 400 MHz 1H NMR integration of the 

C17-H protons. 1H NMR (400 MHz, CD3OD):  5.71 (1H, s, C4-H), 4.17 (1H, dd, 1JH20-C20 

157.0 Hz, 3JH20-H21 7.6 Hz, C20-H), 3.98 (1H, m, C17-H), 3.75-3.39 (3H, m), 2.99 (1H, m), 

2.56-2.42 (2H, m), 2.30 (1H, m), 2.15-1.89 (3H, m), 1.88-1.36 (8H, m), 1.29 (2H, s), 1.24 

(3H, s, C18-H3), 1.15-0.84 (3H, m), 0.78 (3H, s, C19-H3); 13C NMR (100 MHz, CD3OD):  

202.5 (C=O), 176.8 (d, JC24-C25 58.8 Hz, C25), 169.9, 124.0, 101.7 (m, C20), 85.7, 79.8-71.5 

(4C, m, C21, C22, C23, C24), 57.5, 55.3, 45.9, 40.1, 37.3, 36.9, 34.8, 34.1, 33.7, 32.6, 29.8, 

25.7, 21.7, 17.8 (C18), 17.3 (C19); LRMS (-ESI): m/z 469 (100%, [C19{13C6}H35O8]-); HRMS 

(-ESI): m/z calcd. for [C19{13C6}H35O8]- 469.2533, found 469.2531. Spectroscopic data was 

found to be consistent with the literature for the unlabelled compound [1].  

DHEA {13C6}-glucuronide, ammonium salt {13C6}-4  

The reaction was conducted with DHEA 1 (5.0 mg, 17 µmol) and {13C6}-α-D-glucuronyl 

fluoride {13C6}-2 as per the general procedure 2.4.5. This gave the title compound {13C6}-4 

as a colourless solid with 71% conversion as determined by 400 MHz 1H NMR integration 

of the C3-H protons. 1H NMR (400 MHz, CD3OD):  5.42 (1H, m, C6-H), 4.40 (1H, dd, 1JH20-

C20 157.9 Hz, 3JH20-H21 7.6 Hz, C20-H), 3.77-3.53 (2H, m), 3.42-3.32 (2H, m), 3.00 (1H, m), 

2.52-2.40 (2H, m), 2.27 (1H, m), 2.17-1.93 (4H, m), 1.90 (1H, m), 1.79 (1H, m), 1.78-1.45 

(7H, m), 1.43-1.21 (2H, m), 1.14 (1H, m), 1.07 (3H, s, C18-H3), 0.90 (3H, s, C19-H3); 13C 

NMR (175 MHz, CD3OD):  176.8 (d, JC24-C25 58.3 Hz, C25), 142.2, 122.1, 102.2 ( dt, 1JC20-

21 47.0 Hz, 2JC20-C22 ≈ 3JC20-C23 4.8 Hz, C20), 79.3, 78.9-67.1 (4C, m, C21, C22, C23, C24), 

53.0, 51.8, 39.6, 38.5, 38.0, 36.7, 32.8, 32.7, 31.9, 30.5, 30.5, 22.8, 21.4, 19.9 (C18), 13.9 

(C19), one peak overlapping or obscured; LRMS (-ESI): m/z 469 (100%, [C19{13C6}H35O8]-); 

HRMS (-ESI): m/z calcd. for [C19{13C6}H35O8]- 469.2533, found 469.2533. Spectroscopic 

data was found to be consistent with the literature for the unlabelled compound [1].  
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EA {13C6}-glucuronide, ammonium salt {13C6}-17  

The reaction was conducted with EA 22 (5.0 mg, 17 µmol) and {13C6}-α-D-glucuronyl fluoride 

{13C6}-2 as per the general procedure 2.4.5. This gave the title compound {13C6}-17 as a 

colourless solid with > 98% conversion as determined by 400 MHz 1H NMR integration of 

the C3-H protons. 1H NMR (400 MHz, CD3OD):  4.42 (1H, dd, 1JH20-C20 158.2 Hz, 3JH20-H21 

7.7 Hz, C20-H), 3.76 (1H, m), 3.59 (1H, m), 3.23 (1H, m), 3.00 (1H, m), 2.43 (1H, dd, JH15’-

H16 19.1 Hz, JH15’’-H16 8.7 Hz, C16-H), 2.07 (1H, m), 1.95-1.45 (9H, m), 1.44-0.95 (11H, m), 

0.88 (3H, s, C18-H3), 0.87 (3H, s, C19-H3), 0.74 (1H, m); 13C NMR (175 MHz, CD3OD):  

177.0 (dt, 1JC24-C25 58.4 Hz, 2JC23-C25 ≈ 3JC22-C25 4.7 Hz, C25), 101.9 (dt, 1JC20-C21 47.0 Hz, 

2JC20-C22 ≈ 3JC20-C23 4.8 Hz, C20), 79.0, 79.0-71.0 (4C, m, C21, C22, C23, C24), 55.9, 52.8, 

46.0, 38.3, 36.9, 36.9, 36.4, 35.3, 32.8, 32.1, 30.3, 29.8, 22.8, 21.6, 21.6, 14.2 (C18), 12.7 

(C19), one peak overlapping or obscured; LRMS (-ESI): m/z 471 (100%, [C19{13C6}H37O8]-); 

HRMS (-ESI): m/z calcd. for [C19{13C6}H37O8]- 471.2690, found 471.2690. Spectroscopic 

data was found to be consistent with the literature for the unlabelled compound [1].   

Etiocholanolone {13C6}-glucuronide, ammonium salt {13C6}-18 

The reaction was conducted with etiocholanolone (5.0 mg, 17 µmol) and {13C6}-α-D-

glucuronyl fluoride {13C6}-2 as per the general procedure 2.4.5. This gave the title compound 

{13C6}-18 as a colourless solid with < 5% conversion as determined by 400 MHz 1H NMR 

integration of the C3-H protons. 1H NMR (400 MHz, CD3OD):  4.41 (1H, dd, 1JH20-C20 158.0 

Hz, 3JH20-H21 7.6 Hz, C20-H), 3.82 (1H, m), 3.69 (1H, m), 3.66-3.49 (2H, m), 3.01 (1H, m), 

2.43 (1H, dd, JH15’-H1619.1 Hz, JH15’’-H16 8.6 Hz, C16-H), 2.08 (1H, m), 2.02-1.72 (5H, m), 

1.71-1.51 (5H, m), 1.50-1.18 (8H, m), 1.03 (1H, m), 0.98 (3H, s, C18-H3), 0.92 (1H, m), 0.87 

(3H, s, C19-H3); 13C NMR (175 MHz, CD3OD):  176.9 (d, JC24-C25 58.3, C25), 101.8 (dt, 

1JC20-C21 47.0 Hz, 2JC20-C22 ≈ 3JC20-C23 4.8 Hz, C20), 79.1-68.9 (4C, m, C21, C22, C23, C24), 

steroidal carbons not observed; LRMS (-ESI): m/z 471 (100%, [C19{13C6}H37O8]-); HRMS (-

ESI): m/z calcd. for [C19{13C6}H37O8]- 471.2690, found 471.2690. Spectroscopic data was 

found to be consistent with the literature for the unlabelled compound [1].  

Synthesised 13C labelled steroid bisglucuronides 

Estradiol 3,17{13C6}-bisglucuronide, ammonium salt {13C6}-9 

The reaction was conducted with estradiol 3-glucuronide, ammonium salt 41 [1] (1.0 mg, 2.1 

µmol, see SI section) and {13C6}-α-D-glucuronyl fluoride {13C6}-2 by general procedure 2.4.5. 

This gave the title compound {13C6}-9 as a colourless solid with > 98% conversion as 

determined by 400 MHz 1H NMR integration of the C17-H protons. 1H NMR (700 MHz, 
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CD3OD):  7.18 (1H, d, J 8.6 Hz, C1-H), 6.87 (1H, dd, J 8.6, 2.5 Hz, C2-H), 6.81 (1H, d, J 

2.5 Hz, C4-H), 4.40 (1H, dd, J 158.5, 7.6 Hz, C25-H), 3.89 (1H, m, C17-H), 3.74 (1H, d, J 

9.5 Hz, C23-H), 3.67-3.09 (7H, m, C29-H, C22-H, C28-H, C21-H, C27-H, C20-H, and C26-

H), 2.83-2.81 (2H, m, C6-H2), 2.31(1H, m), 2.22-2.06 (3H, m), 1.88 (1H, m), 1.69 (1H, m), 

1.49-1.22 (7H, m), 0.88 (s, 3H, C18-H3), C19-H not observed; 13C NMR (175 MHz, CD3OD): 

 176.0 (m, C30), 157.1, 139.0, 135.7, 127.2, 118.1, 115.5, 104.6 (m, C25), 102.8 (C19), 

89.6, 78.6-72.7 (4C, m, C26, C27, C28, C29), 51.2, 45.4, 44.6, 40.2, 38.8, 30.7, 29.7, 28.4, 

27.6, 24.0, 12.1 (C18), C20-24 obscured by carbons C26-30 signals; LRMS (-ESI): m/z 314 

([C24{13C6}H38O14]2-); HRMS (-ESI): m/z calcd. for [C24{13C6}H39O14]- 629.2533, found 

629.2536.  

References 

[1] P. Ma, N. Kanizaj, S.-A. Chan, D.L. Ollis, M.D. McLeod, The Escherichia coli 
glucuronylsynthase promoted synthesis of steroid glucuronides: improved practicality 
and broader scope., Org. Biomol. Chem. 12 (2014) 6208–6214. 
doi:10.1039/C4OB00984C. 

[2] C.C. Waller, M.D. McLeod, A simple method for the small scale synthesis and solid-
phase extraction purification of steroid sulfates, Steroids. 92 (2014) 74–80. 
doi:10.1016/j.steroids.2014.09.006. 

[3] W. Schänzer, M. Donike, Metabolism of anabolic steroids in man: synthesis and use 
of reference substances for identification of anabolic steroid metabolites, Anal. Chim. 
Acta. 275 (1993) 23–48. doi:10.1016/0003-2670(93)80274-O. 

[4] B.J. Stevenson, C.C. Waller, P. Ma, K. Li, A.T. Cawley, D.L. Ollis, M.D. McLeod, 
Pseudomonas aeruginosa arylsulfatase: a purified enzyme for the mild hydrolysis of 
steroid sulfates, Drug Test. Anal. 7 (2015) 903–911. doi:10.1002/dta.1782. 

[5] J.L. Luche, Lanthanides in organic chemistry. 1. Selective 1,2 reductions of 
conjugated ketones, J. Am. Chem. Soc. 100 (1978) 2226–2227. 
doi:10.1021/ja00475a040. 

[6] S.M. Wilkinson, C.W. Liew, J.P. Mackay, H.M. Salleh, S.G. Withers, M.D. McLeod, 
Escherichia coli Glucuronylsynthase: An Engineered Enzyme for the Synthesis of β-
Glucuronides, Org. Lett. 10 (2008) 1585–1588. doi:10.1021/ol8002767. 

[7] TD2015 IDCR, World Anti-Doping Agency. (2014). https://www.wada-
ama.org/en/resources/science-medicine/td2015-idcr (accessed May 26, 2016). 

[8] S.F. Martin, J.A. Dodge, Efficacious modification of the mitsunobu reaction for 
inversions of sterically hindered secondary alcohols, Tetrahedron Lett. 32 (1991) 
3017–3020. doi:10.1016/0040-4039(91)80675-V. 

[9] S.M. Wilkinson, M.A. Watson, A.C. Willis, M.D. McLeod, Experimental and Kinetic 
Studies of the Escherichia coli Glucuronylsynthase: An Engineered Enzyme for the 
Synthesis of Glucuronide Conjugates, J. Org. Chem. 76 (2011) 1992–2000. 
doi:10.1021/jo101914s. 

[10] W.L.F. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals, 7th ed., 
Butterworth-Heinemann, 2013. 

[11] M.D. McLeod, C.C. Waller, A. Esquivel, G. Balcells, R. Ventura, J. Segura, Ó.J. Pozo, 
Constant Ion Loss Method for the Untargeted Detection of Bis-sulfate Metabolites, 
Anal. Chem. 89 (2017) 1602–1609. doi:10.1021/acs.analchem.6b03671. 



104 
 

[12] M.K. Parr, J. Zapp, M. Becker, G. Opfermann, U. Bartz, W. Schänzer, Steroidal 
isomers with uniform mass spectra of their per-TMS derivatives: Synthesis of 17-
hydroxyandrostan-3-ones, androst-1-, and -4-ene-3,17-diols, Steroids. 72 (2007) 
545–551. doi:10.1016/j.steroids.2007.03.006. 

[13] M.I. Choudhary, S.A.A. Shah, S.G. Musharraf, F. Shaheen, Atta-Ur-Rahman, 
Microbial Transformation of Dehydroepiandrosterone, Nat. Prod. Res. 17 (2003) 215–
220. doi:10.1080/1057563021000040835. 

[14] J.R. Hanson, P.B. Hitchcock, M.D. Liman, S. Nagaratnam, Facial selectivity in the 
hydroboration of androst-4-enes, J. Chem. Soc., Perkin Trans 1. (1995) 2183–2187. 
doi:10.1039/P19950002183. 

[15] X. Wang, H. Liu, P. Yan, J. Liu, Y. Li, Q. Sun, C. Wang, Simultaneously rapid 
deprotection of 3-acyloxy groups and reduction of D-ring ketones (nitrile) of steroids 
using DIBAL-H/NiCl2, J. Chem. Res. 35 (2011) 291–293. 
doi:10.3184/174751911X13050949941793. 

[16] M. Tada, K. Chiba, K. Izumiya, M. Tamura, Stereoselective Introduction of Hydroxyl 
Groups via Hydrazones, Bull. Chem. Soc. Jpn. 66 (1993) 3532–3533. 
doi:10.1246/bcsj.66.3532. 

[17] D.N. Kirk, M.S. Rajagopalan, 18-Substituted steroids. Part 12. Synthesis of 
aldosterone 21-sulphate, and an improved general procedure for preparing steroid 
sulphates, J. Chem. Soc., Perkin Trans 1. (1987) 1339–1342. 
doi:10.1039/P19870001339. 

[18] R.O. Hutchins, C.A. Milewski, B.E. Maryanoff, Selective deoxygenation of ketones 
and aldehydes including hindered systems with sodium cyanoborohydride, J. Am. 
Chem. Soc. 95 (1973) 3662–3668. doi:10.1021/ja00792a033. 

[19] A.R. Vogel, A. I.; Furniss, B. I.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, Vogel’s 
Textbook of Practical Organic Chemistry, 5th ed., Longman Scientific & Technical: 
London, 1989. 

[20] D.H. Brauns, Fluoro-acetyl derivatives of sugars. I, J. Am. Chem. Soc. 45 (1923) 833–
835. doi:10.1021/ja01656a044. 

[21] G. Pelletier, A. Zwicker, C.L. Allen, A. Schepartz, S.J. Miller, Aqueous Glycosylation 
of Unprotected Sucrose Employing Glycosyl Fluorides in the Presence of Calcium Ion 
and Trimethylamine, J. Am. Chem. Soc. 138 (2016) 3175–3182. 
doi:10.1021/jacs.5b13384. 

[22] S. Kitahata, C.F. Brewer, D.S. Genghof, T. Sawai, E.J. Hehre, Scope and Mechanism 
of Carbohydrase Action: Stereocomplementary Hydrolytic and Glucosyl-Transferring 
Actions of Glucoamylase and Glucodextranase with α- and β-D-Glucosyl Fluoride, J. 
Biol. Chem. 256 (1981) 6017–6026. 

 

 

 



105 
 

Chapter 3 – Steroid Bis(sulfates) 

3.1. Foreword 

At the time this thesis was written, the following manuscript below had been accepted for 

publication in “Journal of Molecular Endocrinology”. This publication describes the use of 

steroid bis(sulfate) metabolites as markers in the prenatal diagnosis of disease. Permission 

has been granted by BioScientifica Ltd. via RightsLink for the reproduction of this publication 

within this thesis (License number: 4306480240229). This publication was authored by Dr. 

Oscar J. Pozo, Mr. Josep Marcos, Mr. Olha Khymenets, Mr. Andy Pranata, Mr. Christopher 

C. Fitzgerald, Associate Professor Malcolm D. McLeod and Dr. Cedric Shackleton. This 

publication was produced through the contributions of all authors, and was coordinated by 

Dr Oscar J. Pozo. Specific contributions of Mr. Andy Pranata were listed below: 

- The synthesis, purification, and characterisation of 5α-pregnane-3β,20S-diol 

bis(sulfate), ammonium salt reference material. 

- The synthesis and characterisation of 21-hydroxypregnenolone bis(sulfate), 

ammonium salt reference material. 

In general, the steroid bis(sulfate) metabolites in the article were only identified through a 

process of small scale synthesis and LC-MS analysis of reference materials with the 

absence of detailed spectroscopic data. The synthesis and spectroscopic characterisation 

of bis(sulfate) reference materials reported below provided additional certainty regarding the 

identity of the reported bis(sulfate) metabolites. The two bis(sulfate) reference materials 

were prepared and sent overseas to the collaborators to allow direct comparison with urinary 

metabolites as part of the prenatal diagnosis study.  

The synthesis of 5α-pregnane-3β,20S-diol bis(sulfate), ammonium salt was performed by a 

one-step sulfation reaction of 5α-pregnane-3β,20S-diol. The procedure was adapted from 

previous literature methods 32. 5α-Pregnane-3β,20S-diol was reacted with sulfur trioxide 

pyridine complex and purified by solid phase extraction (SPE) using C18 cartridge (Scheme 

4, Section 3.3.3). This purification method was different from the literature that used a WAX 

cartridge but was adopted as it was more cost effective and could be conducted on larger 

scale (~10 mg). It is important to note that no starting steroid diol remained after the sulfation 

reaction and no monosulfates products were observed, thus C18 cartridge could be used 

for the purification. The first wash used during the purification method was saturated 

aqueous ammonia solution in water (5% v/v). This eluent exchanged the counter-ions of the 
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bis(sulfate) reference material from the pyridinium to the ammonium salt. 

 

Scheme 4. Synthesis of 5α-pregnane-3β,20S-diol bis(sulfate), ammonium salt 

The synthesis of 21-hydroxypregnenolone bis(sulfate), ammonium salt was achieved by the 

hydrolysis of 21-acetoxypregnenolone to give 21-hydroxypregnenolone followed by the one-

step sulfation reaction (Scheme 5). A mild basic hydrolysis reagent, potassium carbonate in 

methanol, was used and successfully gave the desired 21-hydroxypregnenolone (Section 

3.3.4) 33. The subsequent sulfation reaction was straightforward. Sulfur trioxide pyridine 

complex was used as reported in a literature procedure 32 and C18 cartridge was again 

employed for purification.  

 

Scheme 5. Synthesis of 21-hydroxypregnenolone bis(sulfate), ammonium salt 
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3.2. Steroid sulfation pathways targeted by disulfates determination. Application to 

prenatal diagnosis. 
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ABSTRACT  

The steroid disulfates (aka bis-sulfates or bis(sulfates)) are a significant but minor 

fraction of the urinary steroid metabolome that have not been widely studied 

because major components are not hydrolyzed by the commercial sulfatases 

commonly used in steroid metabolomics. In early studies, conjugate fractionation 

followed by hydrolysis using acidified solvent (solvolysis) was used for the indirect 

detection of this fraction by GC-MS. This paper describes the application of a specific 

LC-MS/MS method for the direct identification of disulfates in urine, and their use as 

markers for the prenatal diagnosis of disorders causing reduced estriol production: 

STSD (Steroid Sulfatase Deficiency), SLOS (Smith-Lemli-Opitz Syndrome) and PORD 

(P450 Oxido-Reductase Deficiency). Disulfates were detected by monitoring a 

constant-ion-loss (CIL) from the molecular di-anion. While focused on disulfates, our 

methodology included an analysis of intact steroid glucuronides and monosulfates 

because steroidogenic disorder diagnosis usually requires an examination of the 

complete steroid profile. In the disorders studied, a few individual steroids (as 

disulfates) were found particularly informative: pregn-5-ene-3,20S-diol, pregn-5-

ene-3,21-diol (STSD, neonatal PORD) and 5-pregnane-3,20S-diol (pregnancy 

PORD). Authentic steroid disulfates were synthesized for use in this study as aid to 

characterization. Tentative identification of 5-pregn-7-ene-3,20S-diol and 5-

pregn-7-ene-3,17,20S-triol disulfates was also obtained in samples from SLOS 

affected pregnancies. Seven ratios between the detected metabolites were applied 

to distinguish the three selected disorders from control samples. Our results show the 

potential of the direct detection of steroid conjugates in the diagnosis of pathologies 

related with steroid biosynthesis. 
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INTRODUCTION 

From the earliest days of steroid metabolomics, the principal conjugated forms of 

steroids (sulfates and glucuronides) have been hydrolyzed prior to analysis, and for 

decades the instrument of choice for steroid separation and measurement has been 

GC-MS (Shackleton and Marcos 2006). While this technique remains the gold-

standard for steroid profiling, LC-MS/MS has been increasingly adopted because of 

the simplified sample preparation and speed of analysis, mainly provided by absence 

of a derivatization step. This is in spite of the poor ionization for fully reduced steroids 

by electrospray (ESI) (Pozo, et al. 2007).  While an advance, this methodology still 

retains the most time-consuming step of sample preparation, the enzymatic or 

chemical hydrolysis of conjugates (Gomes, et al. 2009). Hydrolysis itself can take 

several hours and requires a further solid phase extraction (SPE). Necessary chemical 

derivatization for GC-MS can also take hours. 

Intact steroid conjugates have been analyzed by mass spectrometry since the 

introduction of particle beam ionization (e.g. Fast Atom Bombardment, FAB) in the 

1980s (Shackleton and Straub 1982; Shackleton 1983). Their spectra have dominant 

deprotonated molecules [M-H]- in negative ion mode allowing ease of mass 

determination. Conjugate analysis was simplified with the introduction of 

electrospray ionization (ESI) and incorporation of HPLC and MS/MS. Glucuronides can 

be analyzed in both positive and negative ionization modes by monitoring [M+NH4]+ 

and [M-H]- respectively (Fabregat, et al. 2013). In the case of monosulfates, collision-

induced-dissociation (CID) of the strong [M-H]- ions shows a distinctive hydrogen 

sulfate (HSO4
-) fragment at m/z 97 (Shackleton 1983; Galuska, et al. 2013). Direct 

detection of steroid conjugates also circumvents the ionization problems of reduced 

steroids (Pozo, et al. 2007) as phase II metabolites have readily ionized functionality 

(i.e. a carboxylic acid in glucuronides and an acidic sulfate ester in sulfates).  
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While mono-conjugates dominate the sulfate fraction of urinary steroids, it has been 

known since the 1960s that disulfates (diS, also referred to as bis(sulfates) or bis-

sulfates to distinguish them from compounds containing the disulfate (S2O7
2-) unit) 

are significant components of the metabolome (Pasqualini and Jayle 1962; Arcos and 

Lieberman 1967; Shackleton, et al. 1968a; Shackleton, et al. 1968b; Jänne, et al. 1969). 

Early studies by GC-MS of separated conjugate fractions showed that, in addition to 

the classic 3β-sulfated steroids, hydroxyls at positions 16β-, 17-(α and β) and 18- in 

androgens and 20- and 21- in pregnanes were prone to sulfation (Jänne, et al. 1969; 

Jänne and Vihko 1970; Laatikainen, et al, 1972; Meng and Sjövall 1997).  

Since these original studies, disulfates have been a largely ignored component of the 

metabolome that nevertheless had significant potential to expand the understanding 

of steroid biosynthetic and metabolic pathways. Given this, we sought to develop LC-

MS/MS methodology to target this group. It was found that constant-ion-loss (CIL) of 

hydrogen sulfate (HSO4
-) fragment at m/z 97 from the molecular di-anion [M-2H]2- 

was the most useful reaction to monitor (McLeod, et al. 2017). 

The ease of steroid disulfate analysis led us to investigate their use in diagnosis of 

steroid biosynthetic disorders. One particular area of interest to the authors has been 

the pre-natal diagnosis of single-gene disorders of estriol (E3) synthesis by urine 

analysis, of which we have studied three conditions by GC-MS, viz., Steroid Sulfatase 

Deficiency (STSD), Smith-Lemli-Opitz Syndrome (SLOS, 7-dehydrosterol reductase 

deficiency) and cytochrome P450 Oxido-Reductase Deficiency (PORD) (Marcos et al. 

2009; Shackleton, et al. 2004a; Shackleton et al. 2004b; Arlt et al. 2004; Reisch, et  al. 

2013; Shackleton et al. 2007). This communication offers our preliminary 

observations of the disulfated steroids excreted in these disorders at around mid-

pregnancy. While focusing on disulfates, selected monosulfates and glucuronides 

were also included; evaluating the complete steroid profile is crucial to diagnosing 

aberrant steroid biosynthesis (Shackleton and Marcos 2006). 
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MATERIALS AND METHODS 

 

Reagents and chemicals 

Steroid starting materials were obtained from Steraloids (Newport, RI, USA). 

Chemicals and solvents including sulfur trioxide pyridine complex (SO3·py), N,N-

dimethylformamide (DMF) and ammonium formate (HPLC grade) were purchased 

from Sigma-Aldrich (St Louis, MO, USA). Aqueous ammonia solution (25%), and 

acetonitrile and formic acid (LC-MS grade) were from Merck (Darmstadt, Germany). 

MilliQ water was obtained using a Milli-Q purification system (Millipore Ibérica, 

Barcelona, Spain).  

 

Synthesis of reference steroid disulfates  

The qualitative synthesis of steroid disulfates as the ammonium salts was performed 

as previously described (McLeod, et al. 2017) with small modifications. Briefly, 1 mg 

of each steroid standard was directly dissolved in a freshly prepared solution of SO3·py 

complex (20 mg, 124 μmol, ~38 eq/steroid or ~19eq/hydroxyl group) in DMF (100 µL) 

and incubated at room temperature for 72 hours. The success of synthesis was 

confirmed by analysis of reaction using both LC-MS in scan mode and LC-MS/MS for 

collision induced dissociation studies. The purification of synthesised disulfates was 

performed using SPE as previously described (McLeod et al, 2017).  

Steroid disulfate reference materials isolated as the corresponding ammonium salts 

and used in this study included: 5α-pregnane-3β,20S-diol bis(sulfate), (3β5αPD-diS); 

3β,21-dihydroxypregn-5-en-20-one bis(sulfate), (21-hydroxypregnenolone 

bis(sulfate), 21OHPreg-diS); androst-5-ene-3β,17α-diol bis(sulfate), (5AD(17α)-diS); 

androst-5-ene-3β,17β-diol bis(sulfate), (5AD(17β)-diS); 3β,16α-dihydroxyandrost-5-

en-17-one bis(sulfate), (16α-hydroxydehydroepiandrosterone bis(sulfate), 

16αOHDHEA-diS); 3β,16β-dihydroxyandrost-5-en-17-one bis(sulfate) (16β-
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hydroxydehydroepiandrosterone bis(sulfate), 16βOHDHEA-diS); pregn-5-ene-

3,17,20S-triol 3,20 bis(sulfate), (5PT-diS); pregn-5-ene-3,20S-diol bis(sulfate), 

(5PD-diS); 5β-pregnane-3β,20S-diol bis(sulfate); 5β-pregnane-3α,20S-diol 

bis(sulfate); 5α-pregnane-3α,20S-diol bis(sulfate); 5β-pregnane-3β,20R-diol 

bis(sulfate), 5α-pregnane-3β,20R-diol bis(sulfate); 5β-pregnane-3α,20R-diol 

bis(sulfate). In this manuscript the IUPAC terms for the 20-hydroxypregnane 

diastereomers are used, S and R, in some publications often trivialized to  and , 

respectively. 

Two reference materials (3β5αPD-diS and 21OHPreg-diS), were prepared on larger 

scale and subjected to characterisation by spectroscopic methods. Experimental 

details and characterization data for these new compounds, together with copies of 

the 1H NMR, 13C NMR, and ESI LRMS spectra are available from the authors (MM). 

 

Urine Samples 

One of our laboratories (Children’s Hospital Oakland, Dr. Cedric Shackleton) has been 

the recipient for urine samples from patients with suspected abnormal 

steroidogenesis in an attempt to characterize the defects. The studies were approved 

by the Children’s Hospital Institutional Review Board (IBR#2010-038)). Many of the 

samples used in this study were remnants of those sent to the laboratory for 

investigation of low pregnancy estriol (generally defined as individuals with serum 

unconjugated estriol < 0.3 MoM, multiples of median). Other samples were from 

women who had had a previously affected SLOS child or other symptomatic reasons 

for concern regarding steroidogenesis. The samples have generally been collected 

between week 16 and 30 of gestation.  They have been stored frozen at -20 °C. Eleven 

STSD samples were analyzed, and six samples from SLOS affected pregnancies. The 

neonatal PORD samples were collected at 7, 18 and 23 days. Urine samples from 

unaffected pregnancies were from a collection held by IMIM (Institut Hospital del Mar 
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d'Investigacions Mèdiques, Barcelona). Normal neonatal urine specimens were from 

a control urine collection at the Institute of Metabolism and Systems Research (IMSR), 

University of Birmingham UK. 

 

Sample treatment  

Urine extraction was by C18 SPE. Generally, a 2 mL aliquot of urine was passed 

through a pre-conditioned cartridge. After a washing step with 3 mL water, steroid 

conjugate analytes were eluted using 2 mL of methanol. After evaporation of a 200 

µL aliquot of the elution solvent, the extract was reconstituted in 100 µL of water and 

5 µL was injected into the UHPLC-MS/MS system. Stably labelled 17-S{18O}3-5α-

androstane-3α,17β-diol 3,17-bis(sulfate) and 17-S{18O}3-5α-androstane-3β,17β-diol 

bis(sulfate) were used as internal standards. The labelled sulfate residue was 

introduced to the steroidal diol mono-sulfate using labelled S{18O}3.py generated in 

situ from labelled sulfuric acid (95% atom) and acetic anhydride in pyridine. 

Experimental details and characterization data for these internal standards, together 

with copies of the 1H NMR, 13C NMR, and ESI LRMS spectra are available from the 

authors (MM) 

 

UHPLC-MS/MS analysis 

 

Disulfates 

 

The study was carried out using a triple quadrupole (XEVO TQ-S micro) mass 

spectrometer equipped with an ESI source and interfaced to an Acquity UPLC system 

for the chromatographic separation (all from Waters Associates, Milford, MA, USA). 

Drying gas as well as nebulizing gas was nitrogen. The desolvation gas flow was set to 

approximately 1200 L/h, and the cone gas flow was 50 L/h. A cone voltage of 30 V and 
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a capillary voltage of 0.4 kV were used in negative ionization mode. The nitrogen 

desolvation temperature was set to 600 °C, and the source temperature was 150 °C. 

The UHPLC separation was performed using an Acquity UPLC CSH Phenyl-Hexyl 

column (2.1 × 100 mm i.d., 1.7 μm) (Waters Associates), at a flow rate of 300 μL/min. 

Water and acetonitrile:water (9:1) both with formic acid (0.01% v/v) and ammonium 

formate (25 mM) were selected as mobile phase solvents. A gradient program was 

used; the percentage of organic solvent was linearly changed as follows: 0 min, 15%; 

0.5 min, 15%; 25 min, 30%; 26 min, 100%; 27 min, 100%; 28 min, 15%; 30 min, 15%. 

The total analysis time was 30 min. 

For the constant ion loss (CIL) scan, dwell times of 6 ms and collision energies of 15 

eV were selected for each ion transition. Due to the molecular masses of steroid 

hormones and metabolites (250-400 Da), the precursor ions of disulfates ([M-2H]2-) 

were restricted to the range from m/z 199 to m/z 274. A Selected Reaction Monitoring 

(SRM) approach containing 75 preselected transitions was used for the simultaneous 

detection of steroid disulfates. Among them, the transition 228→359 corresponded 

to the internal standards used in the analysis.  

 

Monoconjugates 

 

While the focus has been on steroid disulfates we have acquired data on steroid 

monosulfates and glucuronides previously reported as relevant for the studied 

disorders. Based on previous studies (Gomez, et al. 2014) the product ions at m/z 97 

and m/z 75 for sulfates and glucuronides respectively were chosen (Table 1). 

Exceptions were estriol conjugates due to the influence of the aromatic ring. The 

neutral loss of the conjugate (80 Da and 176 Da for sulfates and glucuronides 

respectively were detected).  

 



116 
 

Quantification 

For this study, accurate quantitative measurements have not been conducted for two 

reasons: 1) lack of some authentic compounds prevented the determination of 

relative responses of analyte transitions to internal standard transitions; 2) the urine 

samples were random “spot” collections and not accurate 24 h collections. Instead, 

we have determined “diagnostic-ratios” from raw mass spectrometric transition 

responses. These ratios are of an analyte known to be overproduced to one known to 

be underproduced in a particular disorder. Such ratios have long been used in GC-MS 

analysis (Shackleton and Marcos,2006). 
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RESULTS AND DISCUSSION 

 

Method development 

This communication applies recent LC-MS/MS studies on steroid disulfate analysis 

using the constant-ion-loss (CIL) from the di-anionic precursor [M-2H]2- (McLeod, et 

al. 2017). The method was developed for untargeted detection, and designed for the 

analysis of a maximum number of natural disulfates. The use of this precursor ion and 

the fact that the product ion has a higher m/z value is unusual for small molecules. 

Determination of disulfates under these conditions gives clean chromatograms and 

the main interferences observed in the chromatograms are due to the relatively high 

natural abundance of the 34S isotope (4.25%). The transition coming from the m/z 97 

loss from an unsaturated (4, 5, etc.) {34S}1-disulfate isotope is completely 

indistinguishable from the one coming from an A-ring reduced steroid disulfate.  

To maximize isobaric steroid metabolite separation (e.g. pregnenediol-diS, the 

pregnanediol-disulfates and the androstenediol-disulfates) in this study, a phenyl-

hexyl column with a relatively high amount of ammonium formate (25 mM) was 

required to obtain sharp and well resolved chromatographic peaks. Column 

temperature was critical for this purpose with 30 °C determined as optimum. Under 

these conditions, a 25 min gradient from 15% to 30% of organic solvent provided 

desired separation (Figure 1A). 

Under optimized conditions the elution order of disulfates was 

dihydroxyandrostanones < dihydroxypregnanones < androstenediols < 

pregnanediols. In a specific group, 17β hydroxysteroid disulfates eluted earlier than 

their 17α-counterparts and 20S-hydroxysteroid disulfates eluted earlier than their 

20R counterparts. Regarding A ring derivatives, 5 steroid disulfates eluted before the 

fully reduced metabolites, the elution order of the reduced steroids being 3β,5β < 

3β,5α < 3α,5β < 3α,5α. The chromatographic conditions were also able to separate 
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the two estriol glucuronide isomers i.e. the 16-glucuronide and 3-glucuronide. 

Unfortunately, sulfate and glucuronide conjugates of two useful steroids in PORD 

diagnosis, androsterone and etiocholanolone, could not be separated under the 

selected conditions even after increasing the gradient to 1 h (Figure 1B).  

 

Application to prenatal detection of disorders affecting estriol synthesis 

We report preliminary studies to determine whether steroid disulfates in urine can 

be useful markers in the prenatal detection of disorders affecting estriol synthesis; 

until now only monoconjugates had been used. The background to this study being 

that unconjugated serum E3 is frequently measured at mid-pregnancy as a marker for 

Down’s syndrome as part of a test called triple- or quad- marker screening (Haddow, 

et al. 1994). If results are low the question remains as to the reason, and our original 

research was directed to diagnosis of Smith-Lemli-Opitz Syndrome (SLOS), the 

clinically most severe cause of low E3 (Shackleton, et al. 2007). These studies led to 

investigation of other causes such as STSD and PORD.  

Diagnostic ratios are frequently employed in steroid metabolomics and E3 frequently 

used as denominator. Dominant E3 conjugates are 3- and 16-glucuronides (30% and 

60%, respectively) with about 2.5% as monosulfate and estriol-3-glucuronide-16-

sulfate (6.5%) (Tikkanen, et al. 1973). We assessed E3 excretion from the 

measurement of glucuronide and monosulfate conjugates (Table 1).  

 

Steroid sulfatase deficiency (STSD) (OMIM , 308100, location, Xp22.31) 

This X-linked disorder prevents the release of steroid from steroid sulfates. A 

summary of the biosynthetic pathway leading to estriol is shown in Figure 2, 

illustrating that inactivity of the enzyme in placenta prevents 16OHDHEA-S 

conversion to E3. This fetal 16OHDHEA-S, androst-5-ene-3,16,17-triol sulfate 
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(5AT-S) and other steroid sulfates pass through the placenta and mother to be 

excreted in urine largely unchanged (Taylor and Shackleton, 1979). 

 

STSD urine samples (N=11) and 11 controls were analyzed using the CIL scan method 

for disulfates complemented with the acquisition of 16OHDHEA-S and E3 

monoconjugates (Table 1). Among the disulfates measured by the CIL method, we 

found that the response ratio between six of them, namely 16OHDHEA-diS, 

5AD(17α)-diS, 5AD(17β)-diS, 5PT-diS, 21OHPreg-diS and 5PD-diS against E3 

glucuronide (measured as sum of 3- and 16-glucuronides) was markedly increased in 

STSD.  

 

Representative chromatograms of a normal pregnancy urine and one with an STSD 

affected fetus are shown in Figure 3. The ratio values for our normal and STSD data 

sets are shown in Figure 4A and show all analytes clearly distinguish STSD from 

normal. Additionally, we used the ratios to evaluate the relative efficacy of each 

analyte in diagnosis. The best steroid discriminatory ratio would show greatest 

difference between the lowest steroid sulfate/E3-G ratio value in STSD, and the 

highest ratio found in controls (Figure 4B). Interestingly, the ratios that gave the 

greatest differential were 5 pregnenes; 5PD-diS, 5PT-diS and 21OHPreg-diS, not the 

C19 steroid sulfates on the direct biosynthetic pathway to E3. Combining ratio data 

can give an even greater separation for normal and affected; note the combined data 

for 21OHPreg-diS and 5PD-diS in Figure 4C. Such pregnene metabolites should be 

incorporated in MS based methodologies for detection of the disorder. 

 

P450 oxido-reductase deficiency (PORD) (POR OMIM 124015 location: 7q11.23) 

Several pregnant women carrying PORD fetuses have been studied by GC-MS 

(Shackleton, et al. 2004; Reisch, et al. 2013), but for only two were samples available 

for this study. Shackleton and co-workers (2004a) deduced that the dominant “feto-
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placental” maternal urinary steroid in PORD pregnancies was 3β5αPD-diS. While this 

steroid is also present in the disulfate fraction of normal pregnancy urine it is in much 

greater amount in PORD affected pregnancies. From its dominance together with 

reduced E3, it was concluded that this metabolite is a maternal excretory product of 

fetal pregnenolone. An intermediate precursor would be fetal steroid 5PD-diS. Excess 

pregnenolone and its sulfate are the result of an apparent “block” in 17-

hydroxylase/C17-20 lyase secondary to attenuated POR activity (Figure 5). This block, 

together with suppressed 16-hydroxylase (also due to PORD) causes reduction of 

fetal 16αOHDHEA-S production leading to low maternal E3 production and excretion. 

The precise sequence of reactions from fetal pregnenolone to 3β5PD-diS, and 

localities of the conversions (fetal adrenal, liver, placenta and mother) is yet to be 

determined. The process is multi-step, probably including placental 3β-desulfation 

and likely 3β-hydroxysteroid dehydrogenase/isomerase. It has long been known that 

both 3β5PD-diS and 5PD-diS are prominent disulfates in umbilical cord blood 

(Laatikainen, et al. 1972) so are freely synthesized and transported in the feto-

placental unit. The synthetic sequence for pregnenolone conversion to urinary 

metabolites in normal and PORD affected pregnancies and neonate are shown in 

Figure 5. Evidence suggests the corresponding conversion of pregnenolone sulfate to 

DHEA-S is not an available pathway (Neunzig, et al. 2014; Sanchez-Guijo, et al. 2016; 

Rege, et al. 2017). 

Besides the increased excretion of 3β5PD-diS, we also observed an increase in the 

transitions corresponding to 5PD-diS and 3β,21-dihydroxy-5α-pregnan-20-one 

disulfate (21OHPreg35-diS), the latter in spite of a likely POR requirement by fetal 

21-hydroxylase. However, it should be noted that this fetal enzyme differs from that 

coded by CYP21A2 required in cortisol synthesis (Guerami et al., 1988, Corsan, 

Macdonald and Casey., 1997).  



121 
 

In Figure 6 we illustrate the chromatographic profiles of the 3β5αPD-diS, 5PD-diS and 

21OHPreg35-diS and the E3 conjugates in a control (Figure 6A) and affected 

pregnancy (Figure 6B). The dominance of the 3β5PD-diS in the affected pregnancies 

is striking. In GC-MS diagnosis of PORD prenatally the ratio of 35PD/E3 was used, 

i.e. the ratio of principal PORD fetal metabolite to E3, the conventional feto/maternal 

metabolite. In Figure 6C are shown ratios for intact conjugates in PORD and controls. 

For the denominator (E3) we summed the total of both glucuronylated forms.  

 

One of the GC-MS prenatal diagnostic ratios for PORD remains a challenge for LC-

MS/MS under conditions developed for this study. With fetal PORD there is increased 

androsterone production as a result of the “alternative pathway” activity (Arlt, et al. 

2004) resulting in markedly increased androsterone/etiocholanolone ratio 

(Shackleton et al 2004a). That ratio should theoretically be determined by direct 

analysis of glucuronides and this separation has been already reported by C18 

columns both in glucuronides (Pozo et al. 2008) and unconjugated (Marcos and Pozo, 

2016). Unfortunately, under current chromatographic conditions developed for the 

disulfates such isobaric monoconjugates (sulfates or glucuronides) could not be 

resolved.  

 

Postnatal detection of PORD:  

While this paper has focused on prenatal diagnosis of PORD by 3β5αPD-diS 

measurement, Shackleton and co-workers (Shackleton et al. 2004b) have shown that 

its precursor 5PD-diS is a key analyte in diagnosing the condition in the first months 

of life suggested its inclusion here. In PORD neonatal samples this steroid is dominant, 

excretory values exceeding the classical major metabolites such as 16αOHDHEA-S and 

16α-hydroxypregnenolone sulfate whose biosynthesis by 16-hydroxylation is also 
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POR dependent. In the first weeks of life the fetal zone of the adrenal is still dominant, 

but diminishing, and is responsible for producing a large amount of 3β-OH-5 steroids.  

Figure 7 illustrates the separation of steroid disulfates in an affected PORD infant and 

normal infant. We have included 16αOHDHEA-S as analyte to act as denominator for 

a potential diagnostic ratio 5PD-diS/16αOHDHEA-S. This ratio is shown for three 

affected infants and normal controls in Figure 7C, clearly defining the condition. 

Interestingly, one of the first steroid disulfates to be identified in the neonatal period 

were 5AD(17 and 17)-diS (Shackleton, et al. 1968a, Laatikainen, et al. 1972), and 

16βOHDHEA-diS (Shackleton, et al. 1968b, Laatikainen, et al. 1972) and these are 

clearly separated with this methodology (Figure 7). 

 

Smith-Lemli-Opitz Syndrome. “7-dehydrosterol reductase” deficiency. (SLOS) (OMIM 

602858 location: 11q13,4) 

This condition is caused by deficiency in 7-dehydrosterol reductase and the notable 

feature is a build-up of 7- and 8-dehydrocholesterol, which can be used to diagnose 

the condition when measured in amniotic fluid (Kelley,1994). The affected fetus can 

use these sterols as steroid precursors, resulting in the appearance in maternal urine 

of dehydro (DH) versions of common natural steroids. For instance, 5β-pregn-7(and 

8)-ene-3α,17α,20S-triol, (7(8)-DHPT) and an estriol equivalent, principally 8-

dehydroestriol (8-DHE3) (Guo, et al. 2001, Shackleton, et al. 1999). The biosynthesis 

of steroids in SLOS pregnancy is illustrated in Figure 8.  

SLOS steroids are mainly excreted as glucuronides. Thus, distinct peaks corresponding 

to different isomers of 8-DHE3-G were found in all SLOS samples (Figure 9). On the 

other hand, the detection of 7(8)-DHPT-G provided more difficulties due to 

endogenous interferences probably coming from other pregnenetriols and DH-

hydroxypregnenolones which would share the same transition (Figure 9).  
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A systematic study has not been made of steroid sulfates in this condition and lack of 

appropriate authentic compounds has meant that only candidate chromatographic 

peaks were provisionally identified. Such peaks were chosen by having the expected 

CIL transitions for steroids with additional unsaturation and to be accepted as SLOS-

specific “candidate” analytes these peaks had to be present in all six confirmed SLOS 

pregnancies, and be absent from controls. Two main metabolites were found. Peaks 

with the expected transitions for DHPT-diS and DHPD-diS were observed in all SLOS 

samples. Additionally, other minor metabolites such as DH-androstenediol-diS were 

also found. In Figure 9 the chromatograms of the proposed steroid disulfate analytes 

with DH-pregnanetriol glucuronide and DHE3-glucuronide are shown. Little 

information can be stated on stereochemistry of candidate analytes; not only that of 

3- and 5-positions but both 7 and 8 isomers are likely present. The chromatograms 

illustrated were from one affected pregnancy and one control. Similar 

chromatograms were produced for the other five affected pregnancies and controls. 

Clearly this is the most challenging of the three conditions for conjugate LC-MS/MS 

analysis although aberrant steroid conjugate peaks definitive for SLOS were detected. 

 

Distinguishing the disorders: summary 

This study has focused on the mass spectrometric analysis of steroid disulfates, but 

steroid monosulfates and glucuronides have been included where required to 

determine ratios used for diagnosis. In order to evaluate the potential of the approach 

based on the combined screening of glucuronides, monosulfates and disulfates, we 

propose a panel of markers able to differentiate between the selected disorders and 

control samples. We found that using the ratios 16OHDHEA-S/E3-G, 35PD-diS/E3-

G, 5PD-diS/16OHDHEA-S, 21OHPreg-diS/E3-G, 21OHPreg-diS/16OHDHEA-S, 

8DHE3-G/E3-G and DHPT-diS/E3-G allowed for the successful differentiation between 

the controls and the different disorders 
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Hopefully the study emphasizes the potential of LC-MS analysis of all conjugate types 

in future development of steroid metabolomics. 

 

General discussion 

The steroid disulfates are a minor fraction of the urinary steroid metabolome, but 

may provide significant markers of aberrant steroid biosynthesis. As a family, intact 

steroid disulfates have not been recently subject to detailed study due a lack of 

suitable analytical methodology. In the past, studyingthis family always involved time-

consuming fractionation of free and conjugate families followed by solvolysis and GC-

MS analysis. Most of the available literature stems from the 60’s and 70’s and it was 

shown early which secondary positions (assuming the primary sulfated position is the 

3-hydroxyl) could be sulfated. These were 17 (-and ), 16- and 18 in C19 steroids 

and 20S- and 21- in C21 steroids. During that early research period the dominant 

biological materials chosen to study were associated with pregnancy. In that respect 

our current studies have followed this lead and the major disulfate components 

reported here were also noted in the early publications (Shackleton, et al. 1968a; 

Shackleton, et al. 1968b; Jänne, et al. 1969; Jänne and Vihko 1970; Laatikainen et al 

1972; Meng and Sjövall 1997). 

There is little definitive evidence as to which sulfotransferases are responsible for the 

secondary sulfation (Mueller et al 2015), and how disulfates are transported (Grosser 

et al 2017). Available sulfation evidence points solely to SULT2A1 which appears to 

have an active site capable of encompassing a wide variety of steroid substrates (both 

free and monosulfated) and conduct sulfation at either end of the steroid molecule. 

Thus, it can sulfate free steroids or steroid monosulfates (Cook, et al. 2009). 

A question remains as to whether disulfation is purely a catabolic reaction or if such 

steroids could be transportable reservoirs of active hormone precursors, as is likely 

the case for DHEA and estrone sulfates. Guerami and co-workers (1988) have 
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proposed that 21OHPreg-diS is an 11-deoxycorticosterone (DOC) precursor during 

pregnancy, particularly since circulating levels of this mineralocorticoid and its sulfate 

are increased during gestation (Corsan, Macdonald and Casey 1997). It is known that 

the placenta is capable of hydrolyzing 21-sulfates and the enzyme responsible is the 

usual STS as 21-desulfation does not occur in STSD (Guerami, et al. 1988). Another 

possible reservoir for disulfates is 5AD(17-diS, potentially a testosterone or 

estradiol precursor. This steroid is also subject to STS action in mammals. In contrast, 

it is believed that human sulfatases are inactive on 17- (C19 steroids) or 20S--sulfates, 

a situation shared with the commercial snail and mollusk enzymes used for hydrolysis 

in steroid analysis (Stevenson, et al. 2014). 

 

In summary, we have provided analytical data on the steroid disulfates through their 

measurement as intact molecules by LC-MS/MS, employing CIL scan monitoring. We 

have attempted to use these additional members of the steroid metabolome to 

distinguish fetal disorders of steroid synthesis. To the best of our knowledge, this is 

the first time that direct analysis of steroid disulfates has proved its value for clinical 

diagnosis. 

The ultimate goal of these studies is the ability to quantify the whole urinary steroid 

metabolome as unhydrolyzed conjugates, the monosulfates, disulfates, glucuronides 

and mixed sulfate-glucuronide conjugates. Studies of the plasma steroid metabolome 

should also be included. To achieve this goal will require the synthesis of a multitude 

of authentic steroids including appropriate internal standards and an improvement in 

chromatographic resolution. 
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FIGURE LEGENDS 

Figure 1 

Chromatographic separation obtained for (A) seven synthesized isomers of pregnanediol 

disulfates and (B) androsterone and etiocholanolone glucuronide. Note that the method 

optimized for the separation of isomeric disulfate metabolites was not able to separate 

epimeric glucuronides. 

 

Figure 2 

Steroid synthesis in STSD pregnancy starting from fetal adrenal pregnenolone. Inactivity of 

STS prevents conversion of 16OHDHEA-S to estriol in placenta so the former (and its 

metabolites) is excreted as sulfates by mother. C21 steroid sulfates upstream from 

16OHDHEA-S also pass the placenta without de-sulfation and are directly excreted in 

maternal urine. 

 

Figure 3 

Selected urinary 5 steroid sulfate and estriol conjugate analysis in a control and STSD 

affected pregnancy. Note the markedly increased 5 steroid mono and disulfates in STSD. 

Regarding the estriol conjugates it must be noted that glucuronides give lower MS 

transition responses than sulfates under the reported conditions. In reality, E3-S is a minor 

metabolite of estriol compared to the 3- and 16-glucuronides, although it appears contrary 

in the chromatograms. 

 

Figure 4 

Panel A: Ratios of steroid sulfates to E3 glucuronide (3+16) in STSD. The scale represents 

the ratios of raw peak areas of transitions, not the actual amount quantified. All ratios show 

separation of controls from affected pregnancies. Panel B: a measure of the difference 

between the lowest STSD ratio and highest control ratio. The higher this value, the greater 

the separation between affected and normal. Two 5 pregnene di-sulfates are the most 

efficacious diagnostic analytes. Panel C: combining data from 5PD-diS and 21OHPreg-diS 

increases discrimination between normal and STSD. 

 

Figure 5 

Steroid biosynthesis and metabolism in PORD and normal pregnancies and neonates. 

Normal pregnancy: fetal adrenal pregnenolone is converted to maternally excreted estriol 

conjugates (POR essential). PORD pregnancy: excess adrenal pregnenolone (due to PORD) 

is metabolized primarily to maternally excreted 35PD-diS. Normal neonate: Excretion 

product 16OHDHEA-S and other sulfates. PORD neonate: major pregnenolone excretory 

product 5PD-diS. 
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Figure 6 

Selected Reaction Monitoring (SRM) transition chromatograms of estriol conjugates and 

steroid disulfates in control (A) and PORD affected pregnancies (B). Note high excretion of 

35PD-diS and 21OHPreg35-diS. (C) Graph shows peak area ratios (analyte/E3-G) for 

2 affected pregnancies and 11 controls. 

 

Figure 7. 

SRM chromatograms of control (A) and affected PORD babies (B). The key analyte is the 

pregnenolone metabolite 5PD-diS and its relative excess is determined by peak area ratio 

to 16OHDHEA-S, normally a dominant metabolite in neonates. Discrimination obtained 

by the use of 5PD-diS/16OHDHEA-S (C) and 21OHPreg-diS/16OHDHEA-S (D) between 

healthy and PORD babies. 

 

Figure 8. 

Deficiency of 7-dehydrosterol reductase (DHCR7, SLOS] causes 7- or 8- dehydro-cholesterol 

to be used as fetal precursor for downstream steroids which retain B- ring unsaturation. 

Dehydro-pregnanetriol (DHPT) and dehydroestriol (DHE3) glucuronides have been used 

classically for diagnosis but here are candidate disulfates tentatively identified, 

compounds not seen in controls. 

 

Figure 9. 

SRM chromatograms of candidate analytes in SLOS pregnancy. (A) control pregnancy and 

(B) affected pregnancy. Transition chromatograms for known diagnostic steroid 

glucuronides and candidate disulfates useful for diagnosis. While authentic steroids are 

not available, these steroids, with appropriate transitions were only present in affected 

pregnancies. Steroid A/B ring stereochemistry including 7/8 unsaturation is as yet 

unknown. In the control chromatograms E3 conjugates are shown but all SLOS candidate 

disulfates and glucuronides are absent. 

 

  



133 
 

Table 1. SRM parameters of selected steroids 

Analyte Disorder MW Retention 

time 

(min) 

Precursor 

ion (m/z) 

Product 

ion (m/z) 

Collision 

energy 

(eV) 

Monoconjugates       

E3-3G all 464 2.3 463 287 30 

E3-16G all 464 9.3 463 287 30 

E3-3S all 368 7.3 367 287 35 

16OHDHEA-S STSD/PORD* 384 16.0 383 97 40 

DHE3-G SLOS 462 8.6/9.1 461 285 30 

DHPT-G SLOS 510 21.3 509 75 30 

Disulfates       

5AD(17α)-diS STSD 450 15.5 224 351 15 

5AD(17β)-diS STSD 450 13.4 224 351 15 

16αOHDHEA-diS STSD 464 10.0 231 365 15 

16βOHDHEA-diS STSD 464 8.2 231 365 15 

5PT-diS STSD 494 10.5 246 395 15 

21OHPreg-diS STSD/PORD 492 18.2 245 393 15 

5PD-diS STSD/PORD* 478 16.7 238 379 15 

3β5αPD-diS PORD 480 17.6 239 381 15 

DH5AD-diS SLOS 448 11.4 223 349 15 

DHPT-diS SLOS 494 12.6 246 395 15 

DHPD-diS SLOS 478 15.6 238 379 15 

* PORD neonatal 
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3.3. Experimental section 

Described below are the materials, instruments, and methods to synthesise the reference 

materials that were made by Mr. Andy Pranata and were discussed in the relevant 

publication. Copies of the 1H NMR, 13C NMR and LRMS spectra for these compounds are 

available electronically in the supplementary information for this thesis or on request from 

Associate Professor Malcolm D. McLeod. 

3.3.1. Materials 

Chemicals and solvents including sulfur trioxide-pyridine complex (SO3·py) were purchased 

from Sigma–Aldrich (Castle Hill, Australia) unless specified otherwise. 5α-Pregnane-

3β,20S-diol and 21-acetoxypregnenolone (21-acetoxy-3β-hydroxypregn-5-en-20-one) were 

purchased from Steraloids (Newport RI, USA). MilliQ water was used in all aqueous 

solutions. N,N-Dimethylformamide (DMF), aqueous ammonia solution, and potassium 

carbonate were obtained from Chem-Supply (Gillman, Australia). Solid-phase extraction 

(SPE) was performed using Waters (Rydalmere, Australia) Sep-Pak Vac C18 3cc cartridges 

(PN 186004619).  

3.3.2. Instruments 

1H and 13C nuclear magnetic resonance (NMR) spectra were recorded using either a Bruker 

Avance 400 MHz, 700 MHz, or 800 MHz spectrometer at 298 K using deuterated methanol 

solvent. Data is reported in parts per million (ppm), referenced to residual protons or 13C in 

deuterated methanol solvent (CD3OD: 1H 3.31 ppm, 13C 49.00 ppm), with multiplicity 

assigned as follows: s = singlet, d = doublet, t = triplet, m = multiplet. Coupling constants J 

are reported in Hertz (Hz). Low-resolution mass spectrometry (LRMS) and high-resolution 

mass spectrometry (HRMS) for reference material characterisation were performed using 

negative or positive electrospray ionisation (-ESI or +ESI) on a Micromass ZMD ESI-Quad, 

or a Waters LCT Premier XE mass spectrometer. Infrared spectra were recorded on a 

Perkin-Elmer 1800 Series FTIR spectrometer. Melting points were measured on an SRS 

Opti-melt MPA 100 automated melting point system and are uncorrected. Optical rotations 

were recorded in CHCl3 using a Rudolph Research Analytical Autopol I Automatic 

Polarimeter (sodium D line, 298 K). Reactions were monitored by analytical thin layer 

chromatography (TLC) using Merck (Bayswater, Australia) silica gel 60 TLC plates and were 

visualised by staining with a solution of 5% (v/v) sulfuric acid in methanol, with heating as 

required. 
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3.3.3. 5α-Pregnane-3β,20S-diol bis(sulfate), ammonium salt 

The reaction was conducted according to the literature 32. A solution of SO3·py (50.0 mg, 

314 µmol) in DMF (500 µL) was added to a solution of 5α-pregnane-3β,20S-diol (5.0 mg, 16 

µmol) in 1,4-dioxane (500 µL) and the resulting solution was then stirred in a capped vial at 

room temperature for 16 h. The reaction was then quenched with water (7.5 mL) and 

subjected to purification by SPE. A C18 SPE cartridge (3 cc) was pre-conditioned with 

methanol (2 mL) followed by water (4 mL). The reaction mixture was then loaded onto the 

cartridge and eluted under a positive pressure of nitrogen at a flow rate of approximately 2 

mL min-1 with the following solutions: saturated aqueous ammonia solution in water (5% v/v, 

6 mL), water (6 mL), and methanol (6 mL). The methanol fraction was concentrated in vacuo 

to yield the title compound as colourless solid with > 98% conversion as determined by 400 

MHz 1H NMR integration of the C3-H and C20-H protons. 1H NMR (400 MHz, CD3OD): δ 

4.38 (1H, m, C20-H), 4.25 (1H, m, C3-H), 2.02 (1H, m), 1.94-1.88 (2H, m), 1.82-1.29 (13H, 

m), 1.38 (3H, d, J 6.2 Hz, C21-H3), 1.19-0.91 (6H, m), 0.85 (3H, s), 0.73 (3H, s), 0.69 (1H, 

m); 13C NMR (175 MHz, CD3OD): δ 80.1 (C20), 79.7 (C3), 58.3, 57.8, 55.7, 46.3, 42.9, 40.4, 

38.2, 36.6, 36.5, 36.4, 33.3, 29.9, 29.8, 27.1, 25.0, 22.1, 21.7, 13.0 (C18), 12.6 (C19); LRMS 

(-ESI): m/z 479 (5%, [C21H35O8S2]-), 381 (10%), 239 (100%, [C21H34O8S2]2-), 111 (10%), 97 

(20%, [HSO4]-); HRMS (-ESI): calcd. for [C21H35O8S2]- 479.1773, found 479.1770. 

3.3.4. 21-Hydroxypregnenolone 33 

The reaction was conducted according to the literature 33. A solution of 21-

acetoxypregnenolone (500 mg, 1.34 mmol) in methanol (10 mL) and water (1 mL) was 

treated with potassium carbonate (200 mg, 1.45 mmol) and the mixture was stirred at reflux 

for 30 mins. The reaction mixture was concentrated in vacuo, diluted with water (50 mL), 

and extracted with ethyl acetate (3 x 50 mL). The combined organic extract was washed 

with water, dried over sodium sulfate, filtered, and then concentrated in vacuo. The solid 

residue was recrystallised from ethyl acetate to afford the title compound, 139 mg (0.42 

mmol, 31% yield) as colourless solid. Rf 0.23 (50:50 ethyl acetate:hexane); m.p. 158-165 

oC (lit. 34 m.p. 160-165 oC); [α]D
25 +5.0 (c 0.90, CHCl3) (lit. 34 [α]D +7.3 (c 0.907, CHCl3)); 1H 

NMR (400 MHz, CD3OD): δ 5.35 (1H, d, J 5.4 Hz, C6-H), 4.23-4.12 (2H, m, C21-H2), 3.39 

(1H, m, C3-H), 2.58 (1H, t, J 8.9 Hz, C17-H), 2.28-2.14 (3H, m), 2.05-0.98 (16H, m), 1.03 

(3H, s), 0.66 (3H, s); 13C NMR (100 MHz, CD3OD): δ 211.9 (C20), 142.3 (C5), 122.2 (C6), 

72.4, 70.2, 59.9, 58.2, 51.5, 45.5, 43.0, 39.7, 38.6, 37.7, 33.3, 32.9, 32.3, 25.7, 23.9, 22.2, 

19.9 (C18), 13.8 (C19); IR (ATR): 3306 (br, O-H), 2930 (=C-H), 2847 (C-H), 2453 (br, weak), 
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1698 (C=O), 1048 (C-O) cm-1; LRMS (+ESI): m/z 687 (20%, [C42H64O6Na]+), 355 (100%, 

[C21H32O3Na]+); HRMS (+ESI): calcd. for [C21H32O3Na]+ 355.2249, found 355.2245. 

3.3.5. 21-Hydroxypregnenolone bis(sulfate), ammonium salt 

The reaction was conducted according to the literature 32. A solution of SO3·py (50.0 mg, 

314 µmol) in DMF (500 µL) was added to a solution of 21-hydroxypregnenolone (5.0 mg, 15 

µmol) in 1,4-dioxane (500 µL) and the resulting solution was then stirred in a capped vial at 

room temperature for 16 h. The reaction was then quenched with water (7.5 mL) and 

subjected to purification by SPE. A C18 SPE cartridge (3 cc) was pre-conditioned with 

methanol (2 mL) followed by water (4 mL). The reaction mixture was then loaded onto the 

cartridge and eluted under a positive pressure of nitrogen at a flow rate of approximately 2 

mL min-1 with the following solutions: saturated aqueous ammonia solution in water (5% v/v, 

6 mL), water (6 mL), and methanol (6 mL). The methanol fraction was concentrated in vacuo 

to yield the title compound as colourless solid with > 98% conversion as determined by 400 

MHz 1H NMR integration of the C3-H and C20-H protons. 1H NMR (400 MHz, CD3OD): δ 

5.40 (1H, d, J 5.4 Hz, C6-H), 4.59 (1H, d, J 16 Hz, C21-H), 4.47 (1H, d, J 16 Hz, C21-H), 

4.14 (1H, m, C3-H), 2.84 (1H, t, J 8.9 Hz, C17-H), 2.55 (1H, m), 2.35 (1H, m), 2.22-1.10 

(17H, m), 1.04 (3H, s), 0.66 (3H, s); 13C NMR (200 MHz, CD3OD): δ 208.0 (C20), 141.6 

(C5), 123.1 (C6), 79.8 (C3), 73.5 (C21), 59.8, 58.2, 51.4, 45.8, 40.4, 39.6, 38.4, 37.7, 33.3, 

32.9, 30.0, 25.6, 23.8, 22.2, 19.7 (C18), 13.8 (C19); LRMS (-ESI): m/z 245 (100%, 

[C21H30O9S2]2-), 111 (30%), 97 (30%, [HSO4]-), 80 (5%, [•SO3]-); HRMS (-ESI): calcd. for 

[C21H31O9S2]- 491.1410, found 491.1419. 
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Chapter 4 – Conclusions and Future Work 

In conclusion, the development of the glucuronylsynthase enzyme has been very useful for 

the synthesis of steroid bisglucuronides and sulfate glucuronides. This enzymatic 

glucuronylation technique, combined with sulfation and reduction reaction yielded a library 

of ten steroid bisglucuronides and ten steroid sulfate glucuronides. These compounds 

dramatically expanded the number of reference materials prepared and characterised that 

can be used for analytical method development. Comparing with older synthesis routes that 

needed harsher conditions and some protection and deprotection steps, the syntheses 

described in this thesis were milder and practically easier to perform. A method of selective 

labelling of steroid bisglucuronides and sulfate glucuronides was also described using the 

glucuronylsynthase enzyme and 13C labelled α-D-glucuronyl fluoride. This method could 

easily produce stable isotope labelled internal standards or mass spectrometry probes.  

Detection of bis(sulfate) metabolites using GC-MS was performed in the past through 

extensive fractionation, hydrolysis, and derivatisation prior to analysis. Two steroid 

bis(sulfates) were synthesised in this thesis, and these were used as reference materials to 

directly detect markers of disease in the unborn child using the LC-MS methods. Similarly, 

studies of steroid bisglucuronides and sulfate glucuronides were also performed in the past 

using GC-MS that needed a long preparation process. The newly synthesised and 

characterised compounds described in this thesis can be used as reference materials to 

develop new and direct LC-MS methods to study these neglected metabolite families. 

In the future, analysis of steroidal bisconjugates using LC-MS can be performed in areas 

including anti-doping analysis or medical diagnosis. If these compounds were found to be 

useful, more steroid bisconjugates can be synthesised as reference materials. Although the 

glucuronylsynthase enzyme has a broad substrate scope, it was observed to fail in some 

cases. Given this, the development of this enzyme through protein engineering to enhance 

substrate scope or activity could also be a topic for future work. 
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